Anti-bacterial Crab bio-bandages with Bio-dressings 2.0
Commercially available bandages such as hydrocolloid are neither biodegradable nor anti-bacterial. Chitin is known to be the second most naturally available polysaccharide which could be transformed to chitosan which is known to be anti-bacterial (Hasan, 2018) (Chao, 2019) and haemostatic (Okamoto, 2003) (Hu, 2018). Chitosan can be further converted to hydrogel which is bio-degradable and has good water absorbance. Anti-bacterial crab bio-bandages and crab bio-dressings should be bio-degradable as it took 42 days and a month for complete bio-degradation respectively, so they should be better than commercial bandages such as Nexcare Hydrocolloid as the disposal of anti-bacterial crab bio-bandages with bio-dressings would no longer pose burden to landfilling or threat to our environment. Anti-bacterial crab bio-bandages with bio-dressings are anti-bacterial with degree of deacetylation of DD% (measured using FTIR Spectrum II) 82.6% (due to the presence of chitosan) even without the application of other anti-bacterial agents and hence can provide complete protection of wounds from skin and soft tissues infections and haemostatic (due to the presence of chitosan). After testing and certification based on IS997:2004 and BS EN 13726-1, they should meet many requirements specified. Anti-bacterial crab bio-bandages should be eligible for marketing. Some results were as follows: 1.4 Anti-bacterial effect of crab hydrogels and roasted crab hydrogels Pure chitosan, crab chitosan, crab hydrogels and roasted crab hydrogels showed significant anti-bacterial effect. NO oral bacterial colonies were present in drinking water with crab hydrogels. Thus crab hydrogels could serve as effective anti-bacterial wound dressings. 1.6 Basing on IS997:2004 standard, the load per unit of area of anti-bacterial bio-bandages was 342g/m2 which met the minimum requirement of 36g/m2, the anti-bacterial bio-bandages had stronger tension strength (>20N both in dry and wet conditions) than commercial hydrocolloid. (2.7N dry 2.8N wet) which was comparable with that required (50-67N) and pH of about 7 which met the pH range of 4.5-8. 1.7 The FSA Free-Swell Absorbency of synthetic blood of crab hydrogel bio-dressings was 1.86g per 5cm x 5cm dressing which was much higher than that of commercial hydrocolloid (0.299g per 5cm x 5cm dressing) based on BS EN 13726-1.
Preparation of a Specific Detector for Aspergillus Niger in Swimming Pools
Swimming pools are one of the transmission routes of superficial and cutaneous fungal infections. Maintenance of environmental hygiene in different parts of swimming pools is of great importance, especially the hygiene of water (1). The conventional fungal detection methods include direct smear preparation, culture, and pathological examinations. However, these methods are not fast enough or do not have sufficient sensitivity (2). Therefore, the present research introduces a novel method for detecting Aspergillus niger in pool water through creating optimal conditions for this fungus, which leads to the citric acid production by the fungus and pH changes of the related culture medium. Four experiments in 10 steps were performed to find the optimal conditions for fungal growth. According to our results, adding each of the variables sucrose, soy, and ferrous sulfate can lead to favorable results. Moreover, the shaker speed increase and fungal aeration are important. Also, we showed that soybean led to the best results compared to other variables. Considering the obtained results, including the shortened detection duration and cost-effectiveness, this method can be presented to the swimming pool owners and pathobiology laboratories as the method of choice for Aspergillus niger detection.
Preparation of a Specific Detector for Aspergillus Niger in Swimming Pools
Swimming pools are one of the transmission routes of superficial and cutaneous fungal infections. Maintenance of environmental hygiene in different parts of swimming pools is of great importance, especially the hygiene of water (1). The conventional fungal detection methods include direct smear preparation, culture, and pathological examinations. However, these methods are not fast enough or do not have sufficient sensitivity (2). Therefore, the present research introduces a novel method for detecting Aspergillus niger in pool water through creating optimal conditions for this fungus, which leads to the citric acid production by the fungus and pH changes of the related culture medium. Four experiments in 10 steps were performed to find the optimal conditions for fungal growth. According to our results, adding each of the variables sucrose, soy, and ferrous sulfate can lead to favorable results. Moreover, the shaker speed increase and fungal aeration are important. Also, we showed that soybean led to the best results compared to other variables. Considering the obtained results, including the shortened detection duration and cost-effectiveness, this method can be presented to the swimming pool owners and pathobiology laboratories as the method of choice for Aspergillus niger detection.