Sport specific assessment of inter-limb asymmetries: A way to reduce injuries
In recent years, lower inter-limb asymmetries have become a topic of increasing interest in sports research. Numerous studies have investigated the occurrence of between-limb differences in a variety of physical tests, ranging from strength, sprinting, and change of direction speed to jumping tasks. The main focus has been the association of asymmetries to either enhanced injury risk or reduced physical performance. Sport specific aspects and differences of lower limb asymmetries have not often been analysed. Additionally, most studies have been performed with male athletes. Women, however, present higher prevalence of lower limb asymmetries in strength, coordination, and postural control than men. These two aspects were therefore addressed in the present study. Female youth soccer (n=18, age: 16.7 ± 0.8 years) and floorball (n=18, age: 17.6 ± 0.9 years) players completed a test battery consisting of six unilateral jumping tasks in horizontal and lateral direction to detect sport specificity in inter-limb asymmetries. The test comprised the following hops: (1) Single Leg Hop for Distance and (2) a newly created version of it, (3) Single Leg Triple Hop, (4) Single Leg Crossover Hop, (5) Side Hop and (6) Single Leg 6-meters Timed Hop. The scores of every jump were calculated into Limb Symmetry Indexes for each participant. A linear mixed effect (LME) model (using function lmer in program R) was applied to evaluate the effects of sport and jump type on asymmetries. In terms of the whole test battery, there was a significantly higher magnitude of asymmetries in soccer compared to floorball (p=0.0067) with a mean difference of 1.9%. Three significant differences between the effects of different jump types were detected (5>2: p=0.027; 5>3: p6: p=0.014). Moreover, the results showed no significant effect on leg dominance. According to the findings of this study, soccer appears to be more asymmetric than floorball, leading to the suggestion that inter-limb asymmetries may not only be task-specific, but also sportspecific. Since no significant correlations were detected, this study suggests that inter-limb asymmetries are independent of leg dominance. Considering the possible reduction in athletic performance and increasing injury risk, strength and conditioning coaches are advised to assess athletes' inter-limb asymmetries using a broad, sport specific test battery and decrease them.
In silico Investigation of Cyclosporine Conjugates as Potential Anti-angiogenic Agents via NFAT Inhibition
Calcineurin (CN) activation is a main cause of cancerous tumor formation, one of the leading causes of death globally. Cyclosporine-A (CsA) is a commercially available oral drug that inhibits CN activation; however, low bioavailability limits its use. Nine patented CsA conjugates are potential alternatives to CsA as they have improved cytotoxicities and bioavailabilities but unknown CN-binding affinity. This study aimed to identify the CNinhibition strength and bioavailability of CsA conjugates in silico drug-likeness evaluation via modified Lipinski’s Rule of Five was done on CsA, voclosporin, and CsA conjugates to test bioavailability. The binding affinities of bioavailable compounds were computed via docking to CN in five trials, and the binding affinities were compared. The Water-soluble, RVal, IIA, Alpha, and MeBmt 2 conjugates showed improved bioavailabilities compared to CsA as they passed the drug-likeness screening. After five trials of computational docking to CN, the IIA and RVal conjugates showed improved binding affinities at -15.8 kcal/mol and -15.2 kcal/mol, respectively, compared to CsA at -14.3 kcal/mol. Notably, IIA also showed an improved binding affinity compared to voclosporin at -15.5 kcal/mol. These results suggest that CsA conjugates may be better oral chemotherapeutic drugs than CsA.