Universal computing sorting machine
The purpose of the study was to develop and create a semi-automatic multi-purpose sorting and counting machine of standard articles. Currently, there is a problem of equipping industrial enterprises as well as small trade companies and large retailers with computing sorting machines of standard products of a certain shape. We would like to fill this missing link up with a simple, compact and inexpensive device. Procedures The proposed research consisted of a consistent design of a virtual model of the device and its electronic-mechanical implementation. The virtual model is simulated by a computer program "SolidWorks" object, which graphically shows the operation of the future device. In the development of the computing sorting device standard electronic devices and their associated software have been used. The created simplified real model demonstrates the basic principles and characteristics of the proposed device. Data As an example for the implementation of the concept device a computing device for sorting coins, in circulation in Russia has been created. As a basic principle of sorting objects by their geometric and weight characteristics were used. It is important that the device is focused on the correct form of the objects of sorting (balls, rings, coins, regular polyhedrons, screws, nuts, etc). To confirm the effectiveness of the computing device of this type of sorting, a series of tests of counting of objects manually have been carried out . The effectiveness of the device is determined by comparing the time characteristics of manual and automatic sorting. Findings and conclusions As a result of research and work performed, we have concluded that: 1) The proposed device can be used in various industries. (for example, while sorting ball bearings.) 2) Such a computing sorting device may find it's application in various commercial enterprises: to assist cashiers in retail ATMs. 3) Can be used in payment terminals. 4) 4) After a certain modernization of the device it can be used for money encashment.
Synthesis and Characterization of Niobium Nitride Nanowires
This project aims to explore the potential of inexpensive in-situ deposition of niobium nitride nanowires to improve electrical conductivity. Transition metal nitrides are well known for attributes such as superconductivity, high melting point, simple structure as well as excellent electrical and thermal conductivities. In particular, niobium nitride possesses exceptional hardness and high reflectivity, as well as being a stable field emitter, making it well suited to applications as a cold cathode material. Niobium nitrides are formed by the uptake of nitrogen by niobium. This is achieved by the exothermic formation of an interstitial solid solution of nitrogen atoms in the bcc lattice of the niobium. Existing research has established the possibility of preparing niobium nitride by heating niobium in nitrogen or ammonia over a range of temperatures, by heating niobium pentaoxide and carbon in the presence of nitrogen as well as by chemical vapor deposition of other niobium compounds, nitrogen or hydrogen. For the purpose of this study, a two-step process was used for synthesis. The benefits of a two-step process over direct ammonolysis are apparent, from the greater degree of freedom pertaining to parameter determination. Additionally, characterization of niobium pentaoxide nanowires synthesize under similar conditions is also made possible by terminating the reaction earlier. NbN nanowires were synthesized by annealing niobium pentaoxide nanowires at 850 oC for 2 hours. Subsequent characterization was done using Raman Spectroscopy, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The presence of NbN nanowires via the conversion of Nb2O5 was ascertained by the absence of sharp peaks at 1000 cm-1 for Raman Spectroscopy and XRD plots. Field emission (FE) properties and electrical properties of NbN nanowires were then measured. NbN nanowires were found to have a high turn-on voltage, stable and relatively good field emission characteristics, demonstrating its potential as a cold cathode material. No current saturation was observed for an applied electric field of 0 to 6.0 V/ μm (5). This suggests a low degree of contact resistance for nanowires produced by this method of annealing, since the passage of electrons is not obstructed. Hence there will only be a small voltage drop between the SiO2 substrate and NbN nanowires. Samples containing NbN nanowires were dislodged by ultrasound to form an aqueous suspension of nanowires. A drop of suspension was dripped onto gold-finger substrates, and current-voltage (I-V) measurements of resultant nanowire bridges were taken. NbN nanowire bridges display Ohmic properties, in comparison with Nb2O5 nanowires that are semiconducting. Nanowire bridges obtained by heat-drying were denser and had better electrical properties than those obtained by evaporation to dryness. NbN nanowire bridges display Ohmic properties, in comparison with Nb2O5 nanowires that are semiconducting. Further work would include varying the cooling processes to observe any changes or deformation. Additionally, niobium nitride nanowires can be hybridized with carbon nanotubes (CNTs). A more in-depth comparison between niobium oxide and niobium nitride nanowires is also proposed, along with exploration of the nitrification of other transition metals.
Do SAT Problems Have Boiling Points?
The Boolean Satisfiability problem, called SAT for short, is the problem of determining if a set of constraints involving Boolean (True/False) variables can be simultaneously satisfied. SAT solvers have become an integral part in many computations that involve making choices subject to constraints, such as scheduling software, chip design, decision making for robots (and even Sudoku!). Given their practical applications, one question is when SAT problems become hard to solve. The problem difficulty depends on the constrainedness of the SAT instance, which is defined as the ratio of the number of constraints to the number of variables. Research in the early 90’s showed that SAT problems are easy to solve both when the constrainedness is low and when it is high, abruptly transitioning (“boiling over” ) from easy to hard in a very narrow region in the middle. My project is aimed at verifying this surprising finding. I wrote a basic SAT solver in Python and used it to solve a large number of randomly generated 3SAT problems with given level of constrainedness. My experimental results showed that the percentage of problems with satisfying assignment transitions sharply from 100% to 0% as constrainedness varies between 4 and 5. Right at this point, the time taken to solve the problems peaks sharply. Similar behavior also holds for 2SAT and 4SAT. Thus, SAT problems do seem to exhibit phase transition behavior; my experimental data supported my hypothesis.
My parking space ,, My Right !!
An Automatic Fine system for the handy-caps parking spaces We human beings Are developing creatures, And we believe that the Importance of scientific innovations depends on how much can they contribute in humanities services. Me and my friend worked so hard to present an Invention or a system that is going to make people lives better. In this point of view that we humans believe in. We work hard and we present Inventions, science fears, and new Ideas by a purpose and an intention that those thoughts, Inventions, Ideas, researches …etc. Will make us better people And will help in building a brighter future for mankind. Invention identity Name of the invention: My parking space,, My Right !! Components: Ultrasonic sensor, color sensor, RFID sensor and reader, buzzer, lights, NXT robot, conductive means (wires) How does the invention work? Operating Process The first point we want to make it clear to you that we have two stages: now (present) and later in real life. For the moment : We are using an educational robot (NXT mindstorm) with a programme from our design , using the Ultrasonic sensor to know if there is a car parking or not then using a color sensor to determine if the car is allowed to park or not And if not then write a ticket and a fine but before that it gives an alarm to notice the driver. The main objective of the invention We want to help maintaining the lost rights for the handy-cap people in their parking spots. Because we gave them less than what the numbers say we should of give them so we didn't give them what they deserve and we came at the same time and steeled it from them. this invention is used: usage fields This invention will be used in the handy-caps parking spaces as well as they will help of the economic. It can be employed and used instead of a lot of security persons or traffic Police department. The future vision of the invention It can be combined in a one small unit and with touch panels to know if there is a car parking or not, RFID to determine if the car is allowed or not to park in this space and a camera to know the exact car or maybe by reading the electronic chip in the cars plate .
A study to find out suitable colour to control pests of chilli plants using a colour trap
Chilli (Capsicum annuum L.) is one of the most important condiment crops in Sri Lanka. The main constrain in chilli cultivation is the Leaf Curl Complex (LCC) which reduces the quality of the pods as well as the yield. Many researches have been proven that the problem can be controlled by Integrated Pest Management (IPM) practices. Colour sticky trap is one of the mechanical methods in the IPM package which reduces the pest population successfully. Mainly three colours, namely blue, yellow and white have been identified as suitable colours for traps all over the world. This study was thus, conducted to find out the most effective colour for sticky traps to control chilli leaf curl complex in the Intermediate Zone of Sri Lanka. Traps were prepared from wooden plates of 30 x 25cm in size and the colours were applied in both sides of the plate. Both colourless and odorless vaseline was used as the sticky substance. These blue, yellow and white sticky wooden plates (traps) were fixed in 1m height from the ground level and they were used as the treatments. Six pots with 2 plants each of the variety ‘KA-2’ were used in a treatment and three replicates were sited for the experiment. All the agronomic practices were equally done for all the treatments. Number of trapped pests associated with the LCC was counted in 4, 6, 9 and 12 weeks after transplanting. The number of leaves affected by the pests in a canopy was counted in 7, 10 and 12 weeks after transplanting. The number of damaged green pods and the pod weight were taken at harvesting. The mean values of the number of pests trapped in white, yellow and blue colour traps were 162, 160 and 38 respectively. The percentages of damaged leaves in a canopy at 7, 10 and 12 weeks after transplanting in the blue trap were 89.07, 98.00 and 100.00 respectively. Those values in the white trap were 87.37, 98.90 and 93.29 and in the yellow trap were 69.03, 87.26 and 82.26. Percentages of damaged green pod weight in the blue, yellow and white treatments were 66.63, 47.06 and 45.65 respectively. These results suggest that yellow and white colours are more effective in sticky traps in pest controlling to control chilli leaf curl complex in the Intermediate Zone of Sri Lanka. Further studies are required to confirm the results.