ChordSeqAI: Generating Chord Sequences Using Deep Learning
This report presents a novel AI-driven tool for aiding musical composition through the generation of chord progressions. Data acquisition and analysis are discussed, uncovering intriguing patterns in chord progressions across diverse musical genres and periods. We developed a range of deep learning models, from basic recurrent networks to sophisticated Transformer architectures, including conditional and style-based Transformers for improved controllability. Human evaluation indicates that, within the context of our specific data processing methods, the chord sequences generated by the more advanced models are practically indistinguishable from real sequences. The models are then integrated into a userfriendly open-source web application, making advanced music composition tools accessible to a broader audience.
Project M.I.R.A.S
1.1 Short project summary My project involves the conceptualization and development of an innovative approach to modular self-assembling robotic systems. Through its ability to form any complex configuration, the system is highly adaptable to various scenarios and environments. Before delving deeper into the details of my project, I will provide an overview of my background and motivations. 1.2 Background Ever since I first watched the movie "Big Hero 6", I felt amazed by the applications of the so called “microbots”. From that point on, it made me always wonder what would be possible in the real world. When I did the research, I stumbled upon this field of modular robotics. Initially, I was unsure whether to embark on a project focused on electronics and robotics due to my background in programming. On the other side, this year gave me a chance to see the incredible performances of various projects at different science expos. Besides, I took part in the program of CANSAT LU and learned a lot during it, such as microchips, the control of miniature robotics, and the sensors of it. Finally, at school, I took the option Electronics where we dig into similar topics. With this accumulated knowledge and experience I felt confident enough to start this project.
Can Quantum Mechanical Two-State Theory model Coulomb’s Force?
The quantum mechanical description of the four fundamental forces of nature is very important for the decryption of the rules which underlie our world. While Quantum Electrodynamics (QED) describes the electromagnetic force in great detail, it also uses complex mathematical techniques and advanced physical concepts. In the following, I will analyze to what extent a quantum mechanical two-state model can be used to describe the Coulomb interaction between two charged particles. To do so, I will exclusively focus on the electrostatic interaction, leaving dynamics aside. Furthermore, the analysis is nonrelativistic and does not consider the spin of the particles. Finally, using discrete state theory allows to explore the strength of the basic concepts of early quantum mechanics. In this sense, I will try to develop a simpli ed model for the quantum mechanical description of the electrostatic force. However, the analysis is not simplistic, since the traditional formalism of quantum mechanics will be used, including Dirac's Bra-ket notation, probability amplitudes, the Hamiltonian matrix as well as the Schrödinger equation. To understand the framework of my project, it may be helpful to take a look at the source of inspiration for my analysis: In Chapter 10 of the third volume of the well-known textbook series The Feynman Lectures on Physics[4], the force holding the hydrogen molecular ion together is explained in terms of a two-state system. The electron of the molecular ion can be either at the rst proton or at the second one. The exchange of the electron between both protons leads to an attractive force between them. It is known from QED that the electrostatic interaction between two charged particles is due to the exchange of a virtual photon which acts as force carrier. The idea of my work is to explore whether the electrostatic force can be described by a very similar model, replacing the electron acting as force carrier in the molecular ion by a virtual photon for the description of the electrostatic force between two charged particles. To describe a system consisting of charged particles, I will make the assumption that a charged particle can appear in two states. Either it is in state e where it can emit a photon or it is in state a which enables it to absorb a photon. Upon emission or absorption of a photon the charged particle transitions to the respective other state. This makes the approach analyzed in my work an element of discrete state theory, since two di erent states of the particle are used to store information about it. Of course such a model cannot be compared to the sophisticated theory of Quantum Electrodynamics. The point is, however, that it is interesting to explore the power of the most fundamental concepts of quantum mechanics and to show that such an analysis can lead to inspiring results.
Evaluating the Impact of the AI-Powered Interactive Journal “I Am Great Because of Me” on Reducing Impostor Syndrome Among High Performing Students
Impostor Syndrome, a psychological phenomenon where individuals doubt their abilities despite evident achievements, can hinder personal and academic development. This study aims to evaluate the effectiveness of the interactive journal “I am Great Because of Me”, integrated with artificial intelligence (AI), in addressing Impostor Syndrome among high-performing students. The journal features innovative tools such as the Clance Impostor Phenomenon Scale (CIPS) test accessible via QR code, self-acknowledgement pages, and virtual consultations powered by AI chatbots. These elements aim to support self-reflection, provide real-time diagnostics, and deliver actionable recommendations for users. The ADDIE model was employed for the journal's development, incorporating feedback from experts and users. Likert scales and Cohen’s D analysis were used to evaluate satisfaction, usability, and impact. Results showed that 90.1% of students expressed high satisfaction with the journal’s accessibility, interactivity, and capacity to enhance self-awareness and motivation. A pre-test and post-test conducted on the intervention group revealed a significant reduction in Impostor Syndrome by 42.5%, with an effect size of 2.84, categorized as "very large." Features such as the self-acknowledgement worksheets helped students recognize their strengths, while AI consultations offered additional psychological support. Expert validation emphasized the journal’s clarity, relevance, and objectivity, noting the absence of bias in AI-driven suggestions. The journal was praised for its accurate content, ease of use, interactivity, and the protection of user data, ensuring a safe and private environment for self-development. Students found the journal beneficial not only for addressing Impostor Syndrome but also for fostering personal growth and self-confidence. This research demonstrates the potential of combining psychological theories with AI-driven tools in education. The journal “I am Great Because of Me” effectively aids students in overcoming Impostor Syndrome and improving self-perception. It serves as a scalable solution for schools and individuals aiming to tackle similar psychological challenges. Future studies are encouraged to explore its application in broader contexts to maximize its impact.
A Humanoid Robot on the Basis of Modules Controlled Through a Serial Half-Duplex UART Bus
This thesis presents the design and construction of a small-scale humanoid robot, covering all aspects from 3D modeling to electronics design and programming. The robot is built entirely from custom 3D-printed components, with a new servomotor developed specifically to meet the project’s requirements. During the robot’s development, custom electronics were also designed, leading to a modular platform that enables easy interaction with diverse modules like servomotors and inertial measurement unit (IMU) modules. This modular approach allows these components to be programmed and controlled with minimal adjustments, as well as making development of potential future modules straightforward. The robot is operated via a computer application that includes a graphical user interface for displaying real-time data from the robot.