全國中小學科展

2025年

突破能量屏障:探討原始固碳路徑中異檸檬酸脫氫酶的角色

原始生命的形成被推論是由化學分子透過自發性化學反應組成簡單的代謝路徑,再由這些路徑組合成為複雜的代謝網絡,最終形成原始的生命。由於自營性的代謝路徑可將無機性的CO₂固定為有機物可謂形成生命的前提,因此推論在自營性微生物所擁有的一種生物固碳路徑,可將CO₂固定進入三羧酸循環的「逆向三羧酸循環」被認為是原始細胞最初形成的代謝路徑之一。然而,以化學反應的自由能考量,自2-Oxoglutarate到Isocitrate 此固碳反應並非自發性反應,並由異檸檬酸脫氫酶催化。異檸檬酸脫氫酶在逆三羧酸循環中是決定固碳反應速率的關鍵酵素之一,在當今正向三羧酸循環中亦具重要的調節細胞能量代謝的功能。有鑑於此,本研究探討源自古老地球環境的嗜熱自營菌Aquifex aeolicus 中異檸檬酸脫氫酶的酵素性質,並期待本研究成果對生命起源的探究及發展新穎固碳技術能有所助益。

探討在秀麗隱桿線蟲中IFE-1經由sRNA路徑對於精子生成機制的影響

sRNA在各種物種的精子功能中起著至關重要的作用。在秀麗隱桿線中,當缺少精子相關的sRNA「ALG-3/4 26G sRNA」會導致其在25度時不孕。此外,IFE-1是人類真核轉譯起始因子EIF4E的直系同源基因,主要表達於雄性生殖細胞系統中。在先前研究中我們觀察到當「真核轉譯起始因子IFE-1有缺陷」或「精子缺少相關sRNA」時,亦會導致精子具有缺陷。由於三者的相似性,我們認為IFE-1和26G sRNA的生成路徑有關。因此我們假設IFE-1參與協助酵素NYN-3辨認並切割msd-1 mRNA模板後促進26G sRNA生成。我們使用Western Blot、IP、螢光顯微鏡等方法,探討了IFE-1和MSD-1::GFP的關係,發現在ife-1正常的情況下,高溫對於MSD-1::GFP的表現量沒有影響。並且因該蛋白只表現在公蟲精子,我們可以推論msd-1:gfp 只作用於公蟲精子。而此疑似可正向調控基因表現的26G sRNA,有望發展成有別於過往sRNA藥物抑制基因表現的一種新基因治療方法。

自組裝DNA探針於GNP@PANI電極以檢測miRNA

在許多疾病,如癌症、心血管等疾病中,微核醣核酸 ( microRNA,簡稱miRNA) 的表現水平可作為診斷指標。現行檢測miRNA多使用RT-qPCR,然而此技術成本高、操作繁瑣且耗時。本研究自行設計可抓取目標miR-155的DNA分子探針,透過化學合成與修飾將此探針接合在奈米金-聚苯胺( GNP@PANI )電極上,組裝出具靈敏度與特異性的DNA分子電極。實驗結果顯示:此自組裝探針電極具有良好的線性檢量關係,偵測極限可達0.1 nM。在摻雜多種miRNA的樣品中,此電極仍具有極佳的專一性,回收率高達101.5 %。應用於含生物基質的尿液樣本,可不受背景干擾,其檢測差異僅約0.4 %。本研究採用電化學技術來檢測miRNA,不但成本低、操作簡便,且可依據目標分子進行客製化設計,為新一代檢測技術開創前景。

連通圖上行走路徑經過邊數期望值之研究

本研究延續自作者前一年的研究「連通圖上行走步數期望值之研究」,原題為在一個六面體中,有一隻螞蟻位於其中一個頂點並沿著邊行走,每當牠走到頂點時就會選擇一條邊繼續行走,且牠前往任何方向之機率皆相同,但不可走回頭路,求螞蟻回到出發點時經過邊數之期望值。本研究將題目延伸出了以下幾個問題,得出結論後並證明。結果如下:Kn (n - complete graph)、任意tree、Cm★Cn、Km★Kn中,螞蟻從其中一點vi出發,第一次走到另一點vj時經過邊數之期望值通式。除了研究不同的圖上點到點經過邊數期望值通式,針對圖論中經常用的距離 (點到點的最短路徑經過邊數) 與點到點的期望長度最大者進行比較,探討在圖上之性質。

廣義佩爾方程式的一些探討

這是一份將近持續四年的研究,而這一年佩爾質數的出現,讓我們的討論「突飛猛進」。 佩爾方程式是形如𝑥2−𝑚𝑦2=1的方程式,其中𝑘不為完全平方數之正整數。我們定義廣義佩爾方程式是形如𝑥2−𝑚𝑦2=𝑛 的方程式。在過去的研究中,我們主要從𝑥2−𝑘𝑦2=𝑝 (𝑘,𝑝 皆為互質的奇質數) 的正整數解開始研究,接著延伸到 𝑥2−𝑘𝑦2=2𝑚𝑝1𝑛1𝑝2𝑛2⋯𝑝𝑗𝑛𝑗,進而得到了解的唯一分解性質。而本次的研究,延續之前的工作,對佩爾質數展開了討論。利用蜈蚣彘,我們成功地發現了一些佩爾質數,猜測出一些可能的結果並證明;同時我們對佩爾質數的生成結構做了相當程度的了解。作為結束,設法利用分析的方法解決的之前的問題,以及對方程式的不可約解,是否存在較低次方根解,給出了必要條件。

ChordSeqAI: Generating Chord Sequences Using Deep Learning

This report presents a novel AI-driven tool for aiding musical composition through the generation of chord progressions. Data acquisition and analysis are discussed, uncovering intriguing patterns in chord progressions across diverse musical genres and periods. We developed a range of deep learning models, from basic recurrent networks to sophisticated Transformer architectures, including conditional and style-based Transformers for improved controllability. Human evaluation indicates that, within the context of our specific data processing methods, the chord sequences generated by the more advanced models are practically indistinguishable from real sequences. The models are then integrated into a userfriendly open-source web application, making advanced music composition tools accessible to a broader audience.

Project M.I.R.A.S

1.1 Short project summary My project involves the conceptualization and development of an innovative approach to modular self-assembling robotic systems. Through its ability to form any complex configuration, the system is highly adaptable to various scenarios and environments. Before delving deeper into the details of my project, I will provide an overview of my background and motivations. 1.2 Background Ever since I first watched the movie "Big Hero 6", I felt amazed by the applications of the so called “microbots”. From that point on, it made me always wonder what would be possible in the real world. When I did the research, I stumbled upon this field of modular robotics. Initially, I was unsure whether to embark on a project focused on electronics and robotics due to my background in programming. On the other side, this year gave me a chance to see the incredible performances of various projects at different science expos. Besides, I took part in the program of CANSAT LU and learned a lot during it, such as microchips, the control of miniature robotics, and the sensors of it. Finally, at school, I took the option Electronics where we dig into similar topics. With this accumulated knowledge and experience I felt confident enough to start this project.

Can Quantum Mechanical Two-State Theory model Coulomb’s Force?

The quantum mechanical description of the four fundamental forces of nature is very important for the decryption of the rules which underlie our world. While Quantum Electrodynamics (QED) describes the electromagnetic force in great detail, it also uses complex mathematical techniques and advanced physical concepts. In the following, I will analyze to what extent a quantum mechanical two-state model can be used to describe the Coulomb interaction between two charged particles. To do so, I will exclusively focus on the electrostatic interaction, leaving dynamics aside. Furthermore, the analysis is nonrelativistic and does not consider the spin of the particles. Finally, using discrete state theory allows to explore the strength of the basic concepts of early quantum mechanics. In this sense, I will try to develop a simpli ed model for the quantum mechanical description of the electrostatic force. However, the analysis is not simplistic, since the traditional formalism of quantum mechanics will be used, including Dirac's Bra-ket notation, probability amplitudes, the Hamiltonian matrix as well as the Schrödinger equation. To understand the framework of my project, it may be helpful to take a look at the source of inspiration for my analysis: In Chapter 10 of the third volume of the well-known textbook series The Feynman Lectures on Physics[4], the force holding the hydrogen molecular ion together is explained in terms of a two-state system. The electron of the molecular ion can be either at the rst proton or at the second one. The exchange of the electron between both protons leads to an attractive force between them. It is known from QED that the electrostatic interaction between two charged particles is due to the exchange of a virtual photon which acts as force carrier. The idea of my work is to explore whether the electrostatic force can be described by a very similar model, replacing the electron acting as force carrier in the molecular ion by a virtual photon for the description of the electrostatic force between two charged particles. To describe a system consisting of charged particles, I will make the assumption that a charged particle can appear in two states. Either it is in state e where it can emit a photon or it is in state a which enables it to absorb a photon. Upon emission or absorption of a photon the charged particle transitions to the respective other state. This makes the approach analyzed in my work an element of discrete state theory, since two di erent states of the particle are used to store information about it. Of course such a model cannot be compared to the sophisticated theory of Quantum Electrodynamics. The point is, however, that it is interesting to explore the power of the most fundamental concepts of quantum mechanics and to show that such an analysis can lead to inspiring results.

Evaluating the Impact of the AI-Powered Interactive Journal “I Am Great Because of Me” on Reducing Impostor Syndrome Among High Performing Students

Impostor Syndrome, a psychological phenomenon where individuals doubt their abilities despite evident achievements, can hinder personal and academic development. This study aims to evaluate the effectiveness of the interactive journal “I am Great Because of Me”, integrated with artificial intelligence (AI), in addressing Impostor Syndrome among high-performing students. The journal features innovative tools such as the Clance Impostor Phenomenon Scale (CIPS) test accessible via QR code, self-acknowledgement pages, and virtual consultations powered by AI chatbots. These elements aim to support self-reflection, provide real-time diagnostics, and deliver actionable recommendations for users. The ADDIE model was employed for the journal's development, incorporating feedback from experts and users. Likert scales and Cohen’s D analysis were used to evaluate satisfaction, usability, and impact. Results showed that 90.1% of students expressed high satisfaction with the journal’s accessibility, interactivity, and capacity to enhance self-awareness and motivation. A pre-test and post-test conducted on the intervention group revealed a significant reduction in Impostor Syndrome by 42.5%, with an effect size of 2.84, categorized as "very large." Features such as the self-acknowledgement worksheets helped students recognize their strengths, while AI consultations offered additional psychological support. Expert validation emphasized the journal’s clarity, relevance, and objectivity, noting the absence of bias in AI-driven suggestions. The journal was praised for its accurate content, ease of use, interactivity, and the protection of user data, ensuring a safe and private environment for self-development. Students found the journal beneficial not only for addressing Impostor Syndrome but also for fostering personal growth and self-confidence. This research demonstrates the potential of combining psychological theories with AI-driven tools in education. The journal “I am Great Because of Me” effectively aids students in overcoming Impostor Syndrome and improving self-perception. It serves as a scalable solution for schools and individuals aiming to tackle similar psychological challenges. Future studies are encouraged to explore its application in broader contexts to maximize its impact.

A Humanoid Robot on the Basis of Modules Controlled Through a Serial Half-Duplex UART Bus

This thesis presents the design and construction of a small-scale humanoid robot, covering all aspects from 3D modeling to electronics design and programming. The robot is built entirely from custom 3D-printed components, with a new servomotor developed specifically to meet the project’s requirements. During the robot’s development, custom electronics were also designed, leading to a modular platform that enables easy interaction with diverse modules like servomotors and inertial measurement unit (IMU) modules. This modular approach allows these components to be programmed and controlled with minimal adjustments, as well as making development of potential future modules straightforward. The robot is operated via a computer application that includes a graphical user interface for displaying real-time data from the robot.