全國中小學科展

2024年

當蠶寶寶遇上碳量子點:探索環境友善螢光蠶絲之特性及應用

本研究透過一步煅燒法,成功將天然檸檬酸及尿素,製備成環境友善之碳量子點(CQD,尺寸約 2.7 nm),其有良好水相分散性與窄半高寬之藍色螢光。接著,將塗 CQD 的桑葉餵養五齡蠶,直到吐絲生成 CQD 螢光蠶絲(CQD-S),並觀察到蠶寶寶茁壯成長、結繭、成蛾、產卵,證明了 CQD 優異之生物相容性。螢光光譜證實,隨著餵食 CQD 濃度增加,螢光將從原本的藍光(435 奈米)紅位移至綠光(548 奈米);原因在於,其表面含氧官能基(C-O/C=O)降低(XPS- C1S 證實),導致由較微弱藍光轉成綠光蠶絲。SEM 顯示,CQD-S 的直徑和表面粗糙度有顯著差異。FTIR 和拉曼光譜證明 CQD 餵食,導致蠶絲的 β-折疊結構發生變化。藉由 CQD 與細胞膜之間的靜電吸附,可以在 10 分鐘內標定大腸桿菌。照射 UV 光結果顯示,CQD-S 可於 10 分鐘內,吸附和光催化降解污染物 (R6G)。此 CQD-S 的研究符合永續發展目標,並兼具創新性與產業應用性。

運用LSTM深度學習技術調整PID控制於倒單擺應用之探討

本研究以深度學習 RNN(Recurrent Neural Network)演算法中的 LSTM(Long Short Term memory)改善 PID,利用其時間序列的保留資料方法,預測 PID 參數值,使控制器得以精確且快速的調整非線性系統。此研究從 peak amplitude 及transient time,以及倒單擺振幅的圖表收斂情形等層面去做探討。當單擺質量大於下方 pendulum cart 的質量時,傳統的 PID 控制方法無法精準的調整系統,而LSTM 深度學習模型能夠產生較佳且較顯著的效果。且KP 數值在倒單擺系統中, 小於 1 無法收斂,KP 數值越小時,圖形越趨發散。此訓練之 LSTM 深度學習模型可以應用於非線性系統中,以增加其穩定性,並能夠更快速的為系統找到適合 的 PID 參數值。

Generalized Skolem-type Sequence的相關探討

本研究探討 Skolem sequence之推廣generalized Skolem-type sequence,是否能類比Skolem sequence 探討奇偶性 (parity) 的問題,也就是依照各數字所處位置模重複度 𝑠 所得餘數分類,觀察必不能填滿數列的組合,以找到數列存在的必要條件。接著以奇偶性 (parity) 及密度 (density) ,也就是比較數列位置差最大值與放入數列各數字的位置差總和,找出generalized Skolem sequence 的推廣 generalized Skolem-type sequence 存在的必要條件。 至於充分性,我構造出 hooked (1, 𝑚)-near Skolem sequence 在 𝑛 ≡ 2, 3 (mod 4), 𝑚 ≡ 1 (mod 2) 的情形,並猜想推導出的 hooked (1, 𝑚)-near Skolem sequence 必要條件也具充分性。接著我透過串接 Lanford sequence 的方式,構造出 𝑛 ≥ 3𝑚𝑘 + 1, 𝑚𝑖 ≥ 3𝑚𝑖−1 + 1 ∀ 3 ≤ 𝑖 ≤ 𝑘 的 (𝑚1, 𝑚2, … , 𝑚𝑘)-near Skolem sequence 及 hooked (𝑚1, 𝑚2, … , 𝑚𝑘)-near Skolem se- quence 存在的充分必要條件。

從心開始-三角形的四心到各邊距離和

此研究討論三角形𝐴𝐵𝐶的外心、重心、垂心、內心到三邊之距離,並依銳角、直角及鈍角三角形,去比較各距離總和之大小關係及相互之間的關聯性。其主要結果為: 1.用外接圓半徑𝑅及∠𝐴,∠𝐵,∠𝐶表示各心到三邊之距離。 2.設外心、重心、垂心、內心到三邊之距離總和依序為𝑑1, 𝑑2, 𝑑3, 𝑑4 ,其大小關係為: (1)在銳角∆中,𝑑1 ≥ 𝑑2 ≥ 𝑑4 ≥ 𝑑3,僅當正∆ 時,等號成立。 (2)在直角∆中,𝑑1 > 𝑑2 > 𝑑4 > 𝑑3。 (3)在鈍角∆中,𝑑1 > 𝑑2 > 𝑑4 恆成立。𝑑3與𝑑1、𝑑2、𝑑4比較,並無絕對關係,但在等腰鈍角∆,我們給出其大小順序的臨界值。 (4)在鈍角∆中,若最大內角≥ 120° ,則𝑑3 > 𝑑1 > 𝑑2 > 𝑑4。 3.在銳角∆ 及直角∆ 中,等式𝑑2=2/3 𝑑1+1/3 𝑑3和 𝑑2+1/3 𝑑1-1/3 𝑑3-1/3 𝑑4 = 𝑅 恆成立。

Development of a nano-filtration membrane using different linear aliphatic amines and linear cross-linkers for purification of expensive and precious organic solvents

Theseparation, purification, and recovery of precious organic solvents is a huge challenge for many industriesincludingpetroleumandpharmaceuticalcompanies,sincethesecompaniesusehugequantities of organic solvents [1-2]. Natural dissolvable nanofiltration(ON)has atremendous potential for supplantingafewenergy-concentratedcrudepurgingtechniques,similartorefiningandextraction[3-4- 5]. The importance of OSN is obvious from the fact that one cubic meter of methanol requires 1750 MJ of energy for distillation since the process of distillation is comprised of heating, evaporation, and condensation while OSN can purify the same volume of methanol by consuming 3 MJ of energy [6-7]. Additionally, OSN is a useful technology since it is simpler to use than conventional purification and separationmethods.Themembrane'sporestructure,whichinfluencesbothitsselectivityandpermeance, hasasignificantimpactonhowwellthemembranesperform[8-9].Ingeneral,thetrade-offbetweenflux andselectivityaffectsthemembrane'sperformance.Asaresult,themembranes'fluxandpermeabilityare affectedbythetailoringandtuningoftheirporestructure.Therefore,designinganefficientnanofiltration membranes with ideal porosity is highly desirable. Interfacial polymerization (IP) is highly versatile as it provides a freedom of selection of various monomersfortargetingaspecificapplicationsuchasnanofiltrationandreverseosmosisThepotentialfor organicsolventnanofiltration(ON)toreplacevariousenergy-intensivetraditionalpurificationtechniques, suchasdistillationandextraction,isenormous.[8-9].Despitethefactthatmanydifferentmonomershave been successfully used by utilizing IP to create thin film composite nanofiltration TFC-NF membranes, one of the main limitations of such membranes continues to be the poor selection of closely related comparable nanometer sized solutes. Many efforts are still being made to develop potential monomers with the perfect properties for creating membranes that operate excellently [10-11]. Another strategy is also getting more popular in which different porous additives are added to the TFC membrane either at thesupportleveloractivelayerlevel.Theseadditivesincludecarbonorganicframeworks(COFs),metal organic frameworks (MOFs), hyper-cross-linked porous polymers (HCPs), and natural polymers such as chitosan[12-13-14-15]. However,maintainingthecrystallinity ofsuch additives,particularlyMOFsthat lead to crystalline membranes, is extremely difficult while other additions suffer from aggregation and agglomeration that results in membrane flaws that impair the performance of the membranes [16]. Therefore,changingthechemistryofthereacting monomerduringIPcansignificantlyalterthestructure of the resultant active layers of the membranes. The current study was carried out by using linear aliphatic amines 4A-3P and 4A on a crosslinked PAN support. The study was carried out through interfacial polymerization between either 4A-3P and TPC or 4A and TPC on crosslinked PAN. In comparison to the previous studies where cyclic amines such as piperazine or aromatic amines such as meta-phenylenediamine (MPD) are used, we have used linear aliphatic amines 4A and 4A-3P crosslinked with organic phase containing terephthaloyl chloride (TPC) asacross-linker.TheIPreactionwascarriedoutbetweenamineandTPConacrosslinkedPANsupport. The fabricated membrane was extensively characterized by using scanning electron microscope (SEM), ATR-FTIR, water contact angle (WCA), energy dispersive X-ray (EDX) and elemental mapping . The fabricated membrane was used for OSN applications by using dead-end filtration setup.

氣泡的作用範圍與氣泡性質的關係-氣泡的實際應用

現今的海洋環境問題及海上國防安全問題已成為現代人密切關注的焦點,為了解決每年 800 萬噸的垃圾流入海洋和烏俄戰爭的黑海水雷,我們設計了氣泡牆攔截河道垃圾及排除船艦周圍的飄浮式水雷;為了解氣泡牆攔截垃圾的效果,以及氣泡系統對水雷的推開程度,我們設計以下三組實驗:打氣深度與作用範圍的關係、氣泡排放量與作用範圍的關係、水流的偏折角與瞄準誤差關係。當氣泡牆與物體速度方向夾 45 度角時,可以由水流的偏折角與瞄準誤差的關係式得知,兩氣泡中心的間距約在 10cm 時擁有最佳經濟效益。在製作排除水雷的氣泡牆時,根據打氣深度的關係式得知,打氣深度越深越符合經濟效益。依照氣泡排放量的關係式得出,以上兩組氣泡應用在氣泡排放量 4L/min 時最符合經濟效益。我們依照實驗數據找出最符合經濟效益的各項氣泡牆參數,以解決海洋垃圾問題及漂浮式水雷的威脅。

賦權基本面指標型投資模型之建構與績效分析

本研究旨在建立因子選股投資策略之模型。在財報中挑選了五項指標進行討論,並建立三種投資模型:單因子模型,等權重雙因子模型與不等權重雙因子模型。 單因子組合中將各項因子獨立回測後比較,PB 為最佳因子指標。並以市值篩選樣本池後重新回測,得到更優之年化報酬率與風險值。 在雙因子等權重模型中,本研究將 5 項因子指標兩項進行組合,共計 10 項組合,並在優化上針對投資週期更換為季報後一日交易、剔除表現較差的因子 EPS。優化後單因子最佳組合為 ROE,雙因子最佳組合為 ROE+PB。 在雙因子不等權重模型中,以二分逼近法找最佳比重,經過回測後最佳年化報酬率組合為 ROA+PB 並配與權重 2:3,年化報酬率高達 29.76%,為本研究最佳選股模型。

神經胜肽Urocortin對微膠細胞抗發炎、吞噬的作用

腦溢血是由於腦血管的破裂出血所致的嚴重醫療事件,雖能以開顱手術降低原發性腦損傷所致的物理傷害,但尚無特效藥能改善患者手術預後。本研究旨在開發腦溢血治療的新療法。藉由紅血球與微膠細胞(BV-2 Cell Line)的離體實驗模擬腦溢血病患殘留於腦中的血腫塊與微膠細胞在腦部的吞噬情形,探討神經胜肽 Urocortin (UCN)的清除血腫塊的療效。以螢光標籤的方式確認微膠細胞的紅血球吞噬作用,分析 UCN 對微膠細胞吞噬紅血球的量值 (Phagocytosis Index)、及發炎(M1)/抗發炎(M2)的基因變化(RT-qPCR),發現 UCN 能有效增強微膠細胞的吞噬能力,同時亦能調控其 M1/M2 的作用。期望此研究結果能有助於了解 UCN 清除腦血腫塊的作用,作為開發腦溢血新療法的參考依據。

Temperature Vulnerability of PAMP Elicited Plant Immunity Depends on a Heat-Sensitive Enzyme to Activate a Cytokine

病原體已被證實為農作物損失的主要原因,⽽背後可能與幫助農作物防⽌病原體感染的植物免疫反應訊號不⾜有相關連。根據近期研究,全球暖化所造成的溫度上升抑制植物對抗病原體的能⼒,使病原體感染農作物的問題愈發嚴重,⽽其背後的主要原因為⾼溫透過阻礙 Pathogenesis-related protein 1 (PR1) 蛋⽩的⽣成抑制植物活化廣效的免疫反應。PR1 是重要細胞激素的前驅蛋⽩,透過⽣成AtCAPE9 引起免疫反應,⽽負責⽔解 PR1 的蛋⽩酶則被發現會因⾼溫損傷。在本研究中,我們假設並證明環境升溫造成的植物免疫能⼒下降是因為蛋⽩酶活性被破壞導致 AtCAPE9 ⽣成量減少所造成。本研究由設計熱逆境處理阿拉伯芥離葉組織的初步實驗開始,藉以揭⽰ AtCAPE9 可能是使植物在熱損害後恢復氣孔免疫的關鍵因素。此項研究可應⽤於研發轉基因或⾮轉基因的⽅法幫助植物應對病原體,以預防全球暖化所導致的作物損失。

Down Syndrome Cell-adhesion Molecules 基因參與果蠅神經迴路發育的細胞機制

人腦中約有一千億顆的神經細胞 (王希文,2018),他們之間的突觸錯綜複雜,這些樹突與軸突皆連接到正確的位置,讓人不禁好奇這些突觸的連接機制。在經過文獻的查詢過後,才發現Dscam是控制大腦發育的蛋白質之一,Dscam使得細胞能夠進行細胞辨識,能夠使軸突及樹突在腦中進行特定的連結而不致於黏合。目前我們尚未知道,Dscam 會如何影響嗅覺區域中介神經細胞的生長及神經連結,本研究針對黃腹果蠅(Drosophilamelanogaster) 大腦中一小群被 GMR51C07-GAL4標定的嗅 覺區域中介神經元,觀察在正常情況、Dscam過度表現、Dscam表現量受抑制下,這群神經元的型態如何發生。