ConalepAsistant
Throughout our generations, a traditional system has been implemented for registering student attendance, in which the teacher is responsible for carrying out said activity, investing an average time of 15 to 20 minutes, which are part of the time of class. The objective of this project is to optimize this process, thus achieving effective class times, promoting the use of digital tools and innovation in teaching practice, in addition to generating security and confidence in tutors through the use of a service of message, which will notify the student's attendance in real time. Through a survey of the teaching staff of the CONALEP 338 Córdoba campus, it was detected that each teacher has academic loads equivalent to 3 to 5 modules per day, with an average of more than 40 students assigned to each module. Based on this information, the use of technological tools will be promoted and this process of teaching practice will be innovated with zero costs.
心線相依 The Extensions of Euler Line
此題出處為 Crux Mathematicorum, Vol. 44(4), Apr 2018[1]。已知H為△ABC 的垂心,自A、B與C往對邊̅BC、̅CA與̅AB 作三高,得三垂足為 D、E 與F,從△ABC的三邊往外作矩形,使其寬與三邊上的高成比例,再將這三個矩形相臨的頂點連起來,形成三組三角形。證明這三個三角形的中線會三線共點。事實上這點就是外心。 我將原題延伸為四種建構方法,從△ABC 的三邊往外作平行四邊形,分別連三個外接三角形,考慮其中線、角平分線、中垂線與高,以及三角形的五心。分析三線共點的情形。 本研究最特別之處是在四種建構96種情形中,共有69種共點。其中有7 種情形,當任意點J 配上三中線共點於P時,此時J、重心G與P點三點共線,且̅JG :̅GP=2 :1。當任意點J與垂心重合時,三中線共點於外心,此時這條直線即歐拉線。另外有 11 種情形,當任意點J配上三中線共點於P時,此J、重心G與P點三點共線,且̅JG :̅GP=1: 2。當任意點J與外心重合時,三中線共點於垂心,此時這條直線即歐拉線。且當f1(J,m)=P1,f2 (J , m)=P2,此時P2、P1、重心G與J共線。最特別的是當J與外心重合時, P1 是九點圓的圓心。
First-Ever Study on Groundwater Discharge Zones in Tumon Bay, a Protected Marine Preserve: Novel Insights into Coral Reef Conservation
Current research shows Northern Guam to be composed of porous limestone bedrock which allow groundwater to flow out. One large discharge point has already been identified last year in north-western Guam at Ayuyu Cave. However, little is known about Tumon Bay which is known to comprise karst watersheds which should allow for SGD. This project has examined invisible groundwater discharge using a salinity meter and was able to detect two areas of concentrated freshwater discharges in Tumon Bay, with a few minor ones scattered throughout the bay. These seeps were found to have consistently lower salinity while pH varied, and hosted more marine life than other high salinity areas. Further unique coral growth in Tumon Bay’s inner lagoon was associated with these two freshwater discharges with the pH levels further segregating the types of coral species found during on-site observation. Two coral communities, staghorn Acropora and massive Porites, were found adjacent to the surveyed groundwater seeps. It’s inferred that lower wave energy in eastern Tumon Bay allows for greater plankton and other microbial growth leading to more heterotrophic coral growth, favoring Porites corals, while Western Tumon Bay has higher wave energy which leads to the growth of more autotrophic corals, such as the Acropora found in the first area surveyed. This is the first study to document the presence, location, and consequences of invisible freshwater discharges across the billion-dollar bay. This study gauges the effects of SGD on inner shore habitats, also providing a coral cover assessment across Tumon Bay using transects and quadrats. These discoveries allow for strategic coral planting, designated areas needing government protection, and show areas of appealing inner lagoon coral growth for tourism.