全國中小學科展

2024年

A Study on the Dynamics of Coupled Oscillators within Magnetic Environments

此研究針對磁力耦合振盪器進行理論建構與實驗設計,在理論建構中,我們先以彈力作為外力並推導公式,與實驗數據擬合後發現擬合參數極具參考價值。將磁力引入系統並推導公式,發現其與實驗數值擬合效果也極好。融合上述公式與參數後推廣出能描述振盪器運動模式之運動方程式,以Python數值模擬發現,此方程式與數據十分吻合且能產生波包與頻率下降等真實情況,故推論該運動方程式是有一定價值的。在傅立葉分析中發現了簡正模之應用,且當磁鐵初始距離越短或磁力強度越大時,振盪頻率都會有所提升,而初始位移不會造成影響。而本研究的成果將可透過一已知磁性量值之磁鐵求出另一板簧上物質之磁性量值,進而應用到新型機械式磁性雙板簧的懸臂磁力計設計。

聲子晶體結合共振腔與其聲音放大效果之研究

本研究以 zig-zag path 管道自製、設計聲子晶體,並結合空腔(cavity)形成類似電路學的 RLC 共振結構,透過 COMSOL 軟體模擬出其理論之特徵頻率,使空腔中心聲壓達到穩定的放大效果。利用無響室的環境進行實驗,藉由放大電路將聲壓轉為電訊號並以聲源頻率、裝置距離和空腔尺寸作為變因,發現我們自製的聲子晶體可成功將電壓放大約 2.6 倍。此種聲子晶體具有體積小、構造簡單、可擴充為多晶體結構等特性,在未來可結合壓電材料,將其製成兼具發電與降噪功能之環保裝置。

ENVIRONMENTALLY FRIENDLY UPCYCLING APPROACH TO INCREASE IMPACT RESISTANCE OF REINFORCED CONCRETE STRUCTURES: USE OF INDUSTRIAL WASTE AS CONSERVATION MATERIAL

Within the scope of sustainable cities and responsible consumption, which are among the goals of sustainable development, it is aimed to contribute to life safety, defense industry, protection from disasters and economy with the new generation environmental building technologies and materials to be developed in the field of construction. It is a critical issue to protect reinforced concrete structures, piers, bridge piers, overpasses against impacts, and to reduce the damages and economic losses in disaster situations. Reinforced concrete scaffolding is the load-bearing component of the structure and its impact resistance is crucial to the overall safety of the concrete structure. Therefore, there is a need to develop technologies that can protect structures against explosion and impact loads. Within the scope of the project, environmentally friendly and low-cost concrete materials with industrial waste glass, aluminum, plastic material additives, which can be used in columns, which are the most important part in the strength of reinforced concrete structures to prevent explosion and impact damage, were produced and their strengths were analyzed. The use and design of these materials in the strength of concrete creates the originality of the project. When the results obtained in the project were examined, it was observed that the steel fiber concretes with the addition of waste glass, aluminum ring, disc, beverage can and plastic bottle were resistant to high pressure when compared with the control groups without additives, and the change in surface height after the impact test, visual analysis and load-time graphics showed this. It is seen that the additives have a cushioning effect against the impact, absorbing the energy against the force by 87.6% and increasing the strength significantly. In this project, where it is aimed to increase the strength of concrete structures by using the impact energy absorption feature of waste glass, plastic and aluminum, products with high added value are developed, contributing to the literature and the construction sector. With the large-scale use of the project, the costs spent on the disposal of waste materials will be reduced, the upcycling based on re-using the waste products will be contributed, and the loss of life and property due to impacts and explosions will be prevented.

石墨烯-銀異質結構的優化與功能開發 The Optimization and Development of Graphene/Ag-doped heterostructure

從家用微波爐到3C產品,皆有微波電磁干擾 (Microwave Electromagnetic Interference, MWEMI)的防蔽設計需求。依據2020年科展競賽作品中的薄層微量雙金屬催化技術可製得 Graphene/Ag-doped異質結構,但該作品未曾研究此材料的防蔽 EMI 能力。本研究優化此技術,成功將銀奈米結構沉積在石墨烯的缺陷及晶界邊緣,相關技術與實驗參數(化學氣相沉積法的加熱溫度、時長和通氣量)已發表於2023年科展競賽作品。本研究進階發現 Graphene/Ag-doped異質結構具高透明度和屏蔽 MWEMI 的能力,單層膜可屏蔽60%之 MWEMI,效能優於文獻上記載的2~3層石墨烯。而依據2023年文獻說明單層奈米碳管 (MWCNTs)異質結構經氟化處理後,可大幅提升 MWEMI 屏蔽效能,因此我們也將 Graphene/Ag-doped材料經由四氟化碳電漿處理,氟化後的屏蔽效能又比單層石墨烯-銀高出15倍,可遮蔽高達99.9%的 MWEMI。

Automatic Solar Panel Sprinkler Irrigation System

As the global demand for sustainable agriculture practices and renewable energy sources continues to rise, the integration of solar power technology with irrigation systems has gained significant attention. This abstract presents an overview of an innovative solution known as the "Automatic Solar Panel Sprinkler Irrigation System," which combines solar panels and smart irrigation technology to efficiently manage water resources in agricultural settings. The proposed system leverages solar panels to generate electricity and simultaneously operate an automated sprinkler irrigation system. Solar panels are strategically positioned in proximity to crop fields, utilizing photovoltaic cells to convert solar energy into electrical power. This energy is then harnessed to power the irrigation system, providing a sustainable and eco-friendly method for crop hydration. In Solar Power Generation the system consists of photovoltaic panels designed to capture solar energy during daylight. This renewable energy source is converted into electrical power, which is stored in batteries for subsequent use. Automated Sprinkler Irrigation is an advanced control system manages the irrigation process, ensuring efficient water distribution based on crop requirements. Soil moisture sensors and weather data are integrated to optimize irrigation scheduling. In Remote Monitoring and Control, farmers can remotely monitor and control the irrigation system through a user friendly interface, accessible via smartphones or computers. This feature enables real-time adjustments and ensures that water resources are utilized optimally. In Water Conservation the system is designed to minimize water wastage by delivering precise and targeted irrigation, reducing over-watering and the associated environmental impact. In Cost Savings the harnessing solar power, this system reduces electricity expenses, making it an economically viable solution for farmers, particularly in regions with ample sunlight. Using a tracker with an automatic solar panel sprinkler irrigation system can be a smart and efficient way to optimize the system's performance. And the most important thing is that in my prototype it is under the panel and will track the location of the Sun and with that it will lead to the Automatic movement of the panel from east to west and when the evening starts it will go back to its position.

Detection of Calcium Oxalate in Nephrolithiasis Using Ca-D

Nephrolithiasis isacommondiseasewherestoneisfoundinthe kidney. Kidney stones areharddepositsmadeofmineralsandsalts that form inside your kidneys. Urine has various wastes dissolved in it. When there is too much waste in too little liquid, crystals begin to form. Sometimes, tiny stones move out ofthebodyinthe urine without causingtoomuchpainanditcontainscalciumoxide. But stones that don't move may cause a back-up of urine in the kidney, ureter, the bladder, or the urethra. Therefore, Ca-d is used as an effective and affordable alternative device to check kidney stones. A new detector we can operate as an indicator for people who have high calcium oxalate levels in their urine. Which will help us to check calcium oxalate levels easily and practically with the use of tds (PPM as its unit). It can check whether people have high PPM levels that can cause issues like nephrolithiasis. It can also be used regularly so that people can avoid the disease by consistently checking their urine with Ca-d.

探討果蠅神經膠細胞核的遷移機制

細胞核是真核細胞內最大且至關重要的細胞結構之一。其具體位置在各種細胞中可能有所不同。為了深入了解細胞核位置對於細胞功能的影響,我們選擇以果蠅幼蟲眼疊為研究對象,探究細胞核在神經系統發育過程中所扮演的角色。神經系統在生物體中扮演著極為關鍵的角色,包括神經元和神經膠細胞。如果失去神經膠細胞,將導致神經退化或死亡。在我們的研究中發現,神經膠細胞核在其發育過程中會發生大規模的內部移動。為了限制神經膠細胞核的移動,我們利用了果蠅作為研究動物,並應用了果蠅常用的 GAL4-UAS系統和GrabFP技術,這使得我們能夠限制神經膠細胞內細胞核的移動。我們的實驗成功證明,限制神經膠細胞核的移動會影響神經細胞的軸突發育,但不會影響神經細胞 R1-R8 聚叢的發育。未來,我們計劃將 GrabFP 技術應用於研究不同胞器在細胞內相對位置對其功能的影響。

Synthesis of functionalized mesoporous silica nanoparticles as drug delivery carriers for therapeutic agents

奈米藥物在臨床治療引入了重大創新。多孔性二氧化矽奈米粒子(mesoporous silica nanoparticle) 具有生物相容性和高孔隙度的特性,被運用在奈米藥物傳遞和標靶治療。奈米粒子經過表面修飾可提高藥物載荷效能以達到有效的治療。 本研究建立一項有效的奈米藥物傳遞載體的開發系統,目標在合成多孔性二氧化矽奈米粒子,使用幾丁聚糖對表面進行修飾,以提升地塞米松藥物載荷和穩定的藥物釋放。應用 X-射線繞射和傅立葉轉換紅外光譜來分析奈米粒子產物和表面官能基。應用分光光譜儀進行測定藥物的載荷和釋放速率。幾丁聚糖修飾包覆的多孔性二氧化矽奈米粒子具有 53.7%的藥物載荷率,比較未修飾的粒子只有 27.9%。藥物釋放實驗,幾丁聚糖包覆的二氧化矽奈米粒子可以延緩藥物釋放,在 5 天釋放 19.7%的地塞米松。本次研究說明幾丁聚糖包覆多孔性二氧化矽奈米粒子是有潛力的奈米藥物載體。

Design a program on identifying Proliferation rate of HABs

Due to global population growth and industrialization, excessive inflow of causative nitrogen into rivers, and the increase in water temperature due to global warming, the occurrence of harmful algal blooms (HABs) is increasing. HABs can cause not only ecological destruction but also various social and economic problems. Additionally, consuming water from lakes with abundant toxic cyanobacteria can lead to liver damage, vomiting, abdominal pain, and even death if consumed over a long period. The first recorded occurrence of animal mortality due to HABs was in Australia in 1878, and since then, livestock and wildlife have suffered damages from HABs worldwide. Furthermore, the United States' Lake Erie has experienced frequent HAB occurrences since 2011, and in 2007, China faced social disruption when a massive HAB outbreak in Lake Tai, one of the freshwater lakes, resulted in a suspension of the water supply. In order to address these HAB occurrence issues and assess the severity of HAB events, several systems have already been established and potential solutions have been proposed. However, these systems have limitations such as being highly systematic and advanced in terms of equipment and configuration. They are often located only in periodically affected areas, and they involve substantial costs. Therefore, we aim to overcome these limitations and design a system that can effectively manage HABs.

Bifunctional Nanostructured TiO2 photoelectrocatalyst for Improving Overall Water splitting performance

Titanium dioxide TiO2 is a semiconductor, that has great chemical and physical properties, such as remarkable resistance against corrosion, chemical stability, and it’s a non-toxic material. Due to these properties, it rises as an excellent candidate for a wide range of different applications, such as being a popular material for solar cells, paints, cosmetics, energy storge devices, and water splitting. For photoelectrochemical water splitting to generate Hydrogen, a large surface area is essential, to be maximized to enhance photocatalytic redox processes and hence improve overall efficiency. Therefore, different methods have been utilized to fabricate TiO2 nanotubular structure. However, they either encounter a difficult process because of a long synthesis time or the need of expensive precursors. In our work, we demonstrated a study of enhancing 1 D TiO2 film to perform as a bifunctional catalyst (works as cathode and anode). As it is known that TiO2 is kinetically hampered as cathode for producing hydrogen from water, this is due to sluggish electron transfer at the interface between TiO2 and water and the conduction band of the TiO2, which is more negative than H+/H2. To tackle this problem, TiO2 film should be modified. In this work, we modified the TiO2 as bifunctional by investigating different parameters in detail, like the anodic oxidation solution content, anodic oxidation time, and the role of the polyethylene glycol chain. Electrochemical characterization and SEM, and XPS were utilized to prevent the nanotubes structure and to confirm the chemical bonding as well as investigating the physical properties such as resistance and electron kinetic mobility.