探討「互相牽制」中整除問題的整數解
在這篇作品中,探討科學研習月刊中森棚教官的數學題-「互相牽制」的整除問題,此問題是指「你可以找到多少組正整數對(x, y),讓x的平方減5為y的倍數且y的平方減5為x的倍數?」。我們除了探討原問題之外,也探討將5改為任意整數 l 的情況,我們要刻畫滿足 y | x2- l 且 x | y2- l 的所有整數解(x, y)。 首先建構生成另一組整數解的方法且推導出在 (x2+y2-l) / xy 為整數的條件下生成另一組整數解的方法。在 (x2+y2-l) /xy 為整數的條件下,可利用二階齊次線性遞迴數列及二次曲線刻畫滿足 y | x2 - l 且 x | y2- l 的所有整數解(x, y)。當上述條件不成立時,利用二次曲線試圖刻畫滿足 y | x2 且 x | y2 的所有整數解(x, y),進一步推導出在特定條件下,可利用二次曲線刻畫滿足 y | x2且 x | y2的所有整數解(x, y)。
從心開始-三角形的四心到各邊距離和
此研究討論三角形𝐴𝐵𝐶的外心、重心、垂心、內心到三邊之距離,並依銳角、直角及鈍角三角形,去比較各距離總和之大小關係及相互之間的關聯性。其主要結果為: 1.用外接圓半徑𝑅及∠𝐴,∠𝐵,∠𝐶表示各心到三邊之距離。 2.設外心、重心、垂心、內心到三邊之距離總和依序為𝑑1, 𝑑2, 𝑑3, 𝑑4 ,其大小關係為: (1)在銳角∆中,𝑑1 ≥ 𝑑2 ≥ 𝑑4 ≥ 𝑑3,僅當正∆ 時,等號成立。 (2)在直角∆中,𝑑1 > 𝑑2 > 𝑑4 > 𝑑3。 (3)在鈍角∆中,𝑑1 > 𝑑2 > 𝑑4 恆成立。𝑑3與𝑑1、𝑑2、𝑑4比較,並無絕對關係,但在等腰鈍角∆,我們給出其大小順序的臨界值。 (4)在鈍角∆中,若最大內角≥ 120° ,則𝑑3 > 𝑑1 > 𝑑2 > 𝑑4。 3.在銳角∆ 及直角∆ 中,等式𝑑2=2/3 𝑑1+1/3 𝑑3和 𝑑2+1/3 𝑑1-1/3 𝑑3-1/3 𝑑4 = 𝑅 恆成立。