ReCiPla - Cyclic Soil Microplastic Remover
GROSSMANN, João Miguel Sastre. ReCiPla - Cyclic Soil Microplastic Remover: A way to remove microplastics from soil using electrostatics. 2023. 28 p. Research report – Scientific Apprentice Program, Colégio Dante Alighieri, São Paulo, 2023. Microplastics are the largest form of physical pollution on the planet. Affecting everything from terrestrial and aquatic environments to the air, compounds up to 1 micrometer in size are present inside the human body and can intoxicate the main organs in which they are found, such as the lungs, spleen, liver, and heart. Therefore, methods of removing these compounds from nature are essential, which is why this research is based on electrostatically removing MP from the soil. To this end, a vibrating conveyor belt was designed that would act in conjunction with a plate electrified by a Van de Graaff generator to separate the plastic compound using electric field induction. After characterization tests to quantify the voltage produced by the generator, which produced an average of 95 kV, the vibrating belt was made and will be used later in conjunction with the electrostatic method. This methodology suggests that it’s a success even after the electrified plate was applied to its structure. It carried out the proposed processes, such as moving the test masses, vibrating them, and fully supporting the electrified plate. In addition, the electrostatic removal method was tested to verify its efficiency and applicability. It was found that the removal of microplastics ranged it from 10 to 20% efficiency, suggesting it to be an effective method for separating microplastics. It should be noted that these statistics will be improved as the research progresses. In this way, the research proved capable of establishing an electrostatic removal method, as well as a process for transporting the material to be removed, thus achieving the objectives it set out to achieve. Finally, it should be noted that this research is still under development, with a view to applying the process in conjunction with the conveyor belt to carry out sample tests, as well as improving the removal process in the future to make it more efficient.
Sequentially bidirectional gastrovascular flows in highly branched digestive tracts of panocerid flatworm
Examination of the predation behavior of polyclad flatworms is extremely rare. This study collects Paraplanocera oligoglena, the most common species in Taiwan. Tank-based feeding experiments reveal that Paraplanocera oligoglena can prey on several species of gastropods, such as sea snails and sea hares. Predation behavior encompasses attack, invasion and ingestion periods. This research pioneers the use of stained clam and static image analysis to observe the highly branched digestive system of flatworms. The sequentially bidirectional flow of gastrovascular cavity is first found in polyclad flatworms by the post-stain active tracking technique. Measuring peristalsis movement in inward and outward directions and segmented movement, the contraction frequencies are roughly the same in subsequent order of given branches. Confirmation is provided that the circular membrane-like muscles within the digestive tract are the main driving force for transporting and mixing food. The food dyeing technology used in this experiment also provides the possibility of future research on food chains in the wild.
Climate Change Brings New Novel Virus
1. Research Motivation Have you ever seen news stating that spring is gradually disappearing from the Korean Peninsula? The characteristics of the four seasons are disappearing due to the impact of global warming. As supporting evidence, droughts and heatwaves continue during the rainy season, and unexpected heavy rainfall occurs during autumn. These abnormal temperature phenomena are greatly affecting agriculture. Crops wither due to untimely cold spells or summer droughts, and the proliferation of bacteria and pests worsens. We need to conduct a thorough investigation and response to such weather phenomena. Carbon is known to be the main culprit behind these abnormal temperature phenomena. We want to explore how carbon affects climate change and understand the implications it has. 2. Research Objectives The consequences of climate change, such as deforestation and rising sea levels, will cause significant damage to society as a whole. This will also have a profound impact on the survival of all living organisms on Earth. Unless industrialization is halted, global warming will continue, making it crucial to gain a proper understanding and find accurate alternatives. The damages caused by global warming are expanding the habitats of mosquitoes, which is expected to have an impact on the spread of mosquito-borne diseases. This can also influence the emergence of novel viruses similar to COVID-19. By examining past outbreaks of diseases transmitted by mosquitoes, we aim to predict and understand such occurrences, as well as explore ways to minimize global warming. 3. Expected Benefits Based on this research, a focused exploration of the ecological impacts of global warming can provide essential data to understand the effects of climate anomalies on us and prepare for them. As these phenomena are expected to worsen over time, it will be possible to develop measures to minimize the damage caused by bacterial infections and agricultural losses.