全國中小學科展

2024年

探討果蠅神經膠細胞核的遷移機制

細胞核是真核細胞內最大且至關重要的細胞結構之一。其具體位置在各種細胞中可能有所不同。為了深入了解細胞核位置對於細胞功能的影響,我們選擇以果蠅幼蟲眼疊為研究對象,探究細胞核在神經系統發育過程中所扮演的角色。神經系統在生物體中扮演著極為關鍵的角色,包括神經元和神經膠細胞。如果失去神經膠細胞,將導致神經退化或死亡。在我們的研究中發現,神經膠細胞核在其發育過程中會發生大規模的內部移動。為了限制神經膠細胞核的移動,我們利用了果蠅作為研究動物,並應用了果蠅常用的 GAL4-UAS系統和GrabFP技術,這使得我們能夠限制神經膠細胞內細胞核的移動。我們的實驗成功證明,限制神經膠細胞核的移動會影響神經細胞的軸突發育,但不會影響神經細胞 R1-R8 聚叢的發育。未來,我們計劃將 GrabFP 技術應用於研究不同胞器在細胞內相對位置對其功能的影響。

圓桌中對應編號的錯排問題

本研究主要探討,有n位教授要在一個圓桌上舉行會議,其中每位教授都有自己的編號 (1~ n號),同時圓桌的 n個位置上也有各自的名牌編號 (1 ~n 號) 以順時針擺放置圓桌上與教授們的編號對應。其中第一個進來的 1號教授坐到了圓桌上 k號位,此後的教授們亂序一個一個進入,若發現與自己編號相同的位置是空的,就直接入座;若與自己編號相同的位置被占走了,就以逆時針方向尋找空位,直到有空入座。在這樣的遊戲規則下,本研究探討了,有 n位教授,且 1號教授坐到 k號位,如何給定一組教授入場的順序,就能即刻的找出對應的坐法,以及計算坐錯人數的期望值和坐錯人數次數分佈表等等,後續再將遊戲規則改為,1號教授不限定為第一個入場的人,同樣的探討上述問題。

Silver nanoparticles-loaded titanium dioxide coating towards immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation

The environmental implications of rapid industrialization, including rising pollution, depleted resources, the effects of climate change brought on by global warming, and unrestrained groundwater extraction, are contributing to a growing water scarcity crisis [1-3]. The improvements in quality of life are largely attributable to the innovations in manufacturing technology made possible by the Industrial Revolution, but these innovations also pose risks to the natural world and human health [1-3]. The textile business uses a wide variety of raw materials, including natural fibers like cotton as well as synthetic and woolen fibers, and the chemical components of dyes are just one example. The annual output of synthetic dyes is around 700,000 tons, and there are over 10,000 different varieties available. As much as 200,000 tons of synthetic dyes are released into the environment every year due to the inefficient dyeing technique commonly employed in the textile industry. According to the World Bank, the processing of textiles for dyeing and finishing accounts for between 17 and 20 percent of industrial wastewater [1-3]. Textile wastewaters contain a high biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, color, acidity, high suspended particles, high dissolved solids, surfactants, dyestuffs, heavy metals, and other soluble chemicals [3] due to the variety of dyes used to color textile items. In particular, water-soluble reactive and azo dyes are employed to obtain the required color. Ten to twenty percent of the dyes used end up in the effluents, where they might harm wildlife and the ecosystem (carcinogenic or mutagenic). Headaches, nausea, skin irritation, respiratory difficulties, and congenital deformities are only some of the health problems linked to exposure to textile wastewater. There are repercussions for aquatic ecology, environmental biodiversity, and the quality of receiving water bodies. New, low-cost, and highly effective water treatment methods are needed to deal with polluted wastewater. Adsorption and coagulation, two common water purification methods, just concentrate pollutants by shifting them to other phases; they do not "eliminate" or "destroy" them. Sedimentation, filtration, chemical oxidation, and biotechnology are all examples of conventional water treatment methods, but they all have their drawbacks. These include insufficient removal, high chemical reagent consumption, high treatment costs, long treatment times, and the creation of toxic secondary pollutants. New water treatment procedures are needed to improve the quality of treated effluent [1-3]. The use of semiconductor particles in photocatalysis is gaining appeal as a solution to global pollution problems due to its shown efficiency in degrading a wide variety of contaminants. Photocatalyst-coated surfaces-based reactors have proven to be practical for long-term operation over photocatalytic powder-based reactors (i.e., slurry-based reactors) [4-5]. As a promising photo-electrode and photocatalyst, titanium dioxide (TiO2) has enjoyed wider applicability in photocatalytic hydrogen generation, solar cells, and remediation of organic contaminants among other photo-catalytic applications [4-6]. TiO2 has been recognized as one of the low-cost, most effective, and fascinating photo-catalyst as a result of its interesting thermal and chemical stability, desirable electronic features, others, and environmental benignity [6-8]. Pristine TiO2 semiconductor is characterized by a wide band gap that can only utilize the UV part of the light spectrum with a wavelength of less than 385 nm, which is just 5% of the sunlight energy capacity. Spectrum usability extension to visible regions warrants further and extensive research study [8-10]. Additionally, the quickness of the recombination of photo-generated holes and electrons further restricts the practical applicability of the semiconductor [10-12]. It is highly desirable to develop a cost-effective scalable strategy to over these drawbacks toward sustainable development and a clean environment using only natural sunlight irradiation [5-11]. In addition, it is preferred to fabricate them as films rather than powders as photocatalytic immobilized reactors are more practical than powder-based reactors [4-8]. Dye sensitization, supports, magnetic separation, and surface modification by doping with non-metals, metals, and transition metals and coupling with other semiconductors have all been used to enhance the photocatalytic activity of TiO2 photocatalyst. Higher photonic efficiency can be attained through the synergistic fine-tuning of features such as physical, chemical, and electronic, and these composites and hybrid materials based on TiO2 are creating a big trend. Doping has been widely studied as a means of altering the surface of TiO2. Rare earth metals, noble metals, and transition metals are all discussed in the existing literature on the surface modification of TiO2 doped with cations [4-12]. In this study, for the first time, Ag nanoparticles loaded mesoporous TiO2 coating was prepared and applied as an immobilized photocatalytic reactor for water decontamination and bacterial deactivation under natural sunlight irradiation.

3D仿生昆蟲翅膀感測器設計-利用SERS偵測微量汙染物分子

由於環境汙染、食安檢測需求提升,然現有的檢測方式成本和效率都不高,所以本研究試圖用拉曼光譜(Ramanspectroscopy)配合表面增強拉曼光譜 surface-enhanced Raman scattering (SERS)解決訊號微弱的缺點,來找出成本和時間需求最低的檢測方法來進行檢測。我們選用金龜子、蟬和蝴蝶三種昆蟲的翅膀鍍上奈米厚度的銀(10nm)來試驗,以符合 SERS要求的粗糙結構和貴金屬表面,利用熱點效應和表面電漿子共振來增強拉曼光譜的訊號,在實驗中我們也對基板進行了各項檢測,包括 X光繞射分析(XRD)、原子力顯微鏡(AFM)、水接觸角分析以及電子顯微鏡分析(SEM 和 FESEM),也對比了各種參數,包括放置時間、鍍銀厚度、藥品濃度等,也加入了環境水檢測,我們也對比了諸多數據,並且找出所期望的成本最低效率最高的基板參數,未來也有望運用在河水汙染檢測或是農藥殘留量檢測,甚至能運用在藥品或是生物樣本檢測,可以說是有相當發展的潛力。

雙酚 A 對白線斑蚊幼蟲生長發育的影響及病媒蚊防治策略探究

登革熱病媒蚊幼蟲主要孳生於人工積水容器中,幼蟲生長發育主要受到溫度與食物的影響。本研究至戶外調查人工積水容器,發現塑膠類人工容器為主要孳生類型。於實驗室以 11 種人工容器培養白線斑蚊幼蟲,結果發現塑膠底盆的幼蟲發育速度較快,蚊蟲平均翅長較長。以塑膠組成物質雙酚 A 進行試驗, 發現高濃度 (>50 mg/L) 雙酚 A 會導致幼蟲死亡, 活動力降低; 中濃度(12.5~1.56 mg/L) 會促進幼蟲生長速率,縮短發育時間;低濃度 (<0.78 mg/L) 則不顯著。以濃 6.25mg/L 雙酚A 處理蚊幼蟲,Q-PCR 顯示四個齡期的幼蟲蛻皮激素基因 (Ecr) 分別表現量都有增加,其中四齡幼蟲增加 9.68 倍,蛋白質分析顯示 34~72 kDa 之間的片段濃度增加。在蚊幼蟲防治上,4.0 %蛋胺酸和 1.0% 硼酸皆可 100%抑制孑孓活性,結合低濃度蛋胺酸(0.13%)和硼酸(< 0.5% )可以提升 30% 抑制孑孓活性的功效。

利用震源回歸建立斷層面

為降低鑽探所耗費的資源,我們發現可透過震源回歸板塊隱沒帶,萌生出運用地震震源計算斷層平面的方法,因此我們用「2018/02/08 吉安地震」、「2022/09/17 關山地震」、「2022/09/18 池上地震」、「2022/09/18 富里地震」、「2022/06/25 光復地震」、「2018/02/06 花蓮地震」、「2022/02/04 峨嵋地震」、「2022/02/04 新城地震」這 8 個地震為參考資料,並使用 Python 中的LinearRegression 函數建立線性迴歸模型以及使用 fit 函數對模型進行訓練,最後 3D 列印出花東縱谷與中央山脈斷層的差異。可發現兩地區斷層皆為南北走向,花東縱谷斷層的傾角為東傾 69-54 度,而中央山脈斷層則為西傾 60 度左右。

自由液面於下落容器內之流體力學分析以及應用

水杯於失重狀態落下,逐漸形成水坑,並在撞擊地面時因巨大慣性加速度導致水坑崩塌,匯集後產生高速累積噴流。 在本研究中比較了不同杯子大小及材質、溶液性質及體積、落下高度,如何影響失重流體的行為,分析噴流的形狀、速率及高度。並找出造成速度放大的效應,討論能量轉換機制及轉換效率。 失重狀態下,水坑深度 d 隨落下時間 t 漸增,達上限後不再增加。表面張力及親水性接觸面使水面形成球狀水坑。接觸角越大則水坑深度上限 dmax 越大,最大水坑為半球形,水坑抬升速度則會受到表面張力及黏滯力之比值影 響。撞擊時巨大慣性加速度使水坑崩塌並匯集,累積效應放大原速度,產生高速累積噴流 Vjet2=Kv2,累積係數 K 與水坑深度 d 正相關。

金屬豐度對類太陽恆星氦閃的影響

氦閃是類太陽恆星演化過程的關鍵事件之一,過去已有人建立了不同初始質量、不同金屬豐度的恆星演化模型,但礙於當時的科技水平,無法直接計算氦閃的過程,只能在水平分支時透過導入模型繼續運算。如今因為模擬程式的進步,已能補足以往之缺漏,以新的視角來檢視恆星演化的過程。 本研究使用功能強大的 MESA進行恆星演化的模擬,再以 Python將模擬結果繪製成可視化圖表,來探討金屬豐度對類太陽恆星氦閃過程及恆星演化的影響。經分析得知恆星的金屬豐度與能夠發生氦閃的初始質量上下限呈正相關。而在會發生氦閃的恆星中,金屬豐度與其氦閃前的表面光度為正相關。隨後因為金屬豐度氦閃釋放的功率峰值呈負相關,導致其與氦核溫度與密度的變化也呈負相關,所以金屬豐度與恆星氦閃後的光度呈負相關;並因為金屬豐度與氫包層質量呈負相關,所以其與恆星在氦閃前及氦閃後的溫度也呈負相關。

石墨烯-銀異質結構的優化與功能開發 The Optimization and Development of Graphene/Ag-doped heterostructure

從家用微波爐到3C產品,皆有微波電磁干擾 (Microwave Electromagnetic Interference, MWEMI)的防蔽設計需求。依據2020年科展競賽作品中的薄層微量雙金屬催化技術可製得 Graphene/Ag-doped異質結構,但該作品未曾研究此材料的防蔽 EMI 能力。本研究優化此技術,成功將銀奈米結構沉積在石墨烯的缺陷及晶界邊緣,相關技術與實驗參數(化學氣相沉積法的加熱溫度、時長和通氣量)已發表於2023年科展競賽作品。本研究進階發現 Graphene/Ag-doped異質結構具高透明度和屏蔽 MWEMI 的能力,單層膜可屏蔽60%之 MWEMI,效能優於文獻上記載的2~3層石墨烯。而依據2023年文獻說明單層奈米碳管 (MWCNTs)異質結構經氟化處理後,可大幅提升 MWEMI 屏蔽效能,因此我們也將 Graphene/Ag-doped材料經由四氟化碳電漿處理,氟化後的屏蔽效能又比單層石墨烯-銀高出15倍,可遮蔽高達99.9%的 MWEMI。

Look your eyes,know your life~A portable body detection device

本研究是基於去年的 PBC(Protect Brain Cylinder)作品[1],並根據評審指導將作品做了大幅度修改。相較於 PBC 需要一個額外的裝置,本研究僅須在手機相機前方,安裝光源處理模組,搭配本團隊開發的 App,即可清楚地拍攝出瞳孔影像。並經由 App 中的影像分析功能,即可在影像拍攝完成後的兩秒內完成分析, 並將結果繪圖呈現在手機螢幕上。偵測的時間相較 PBC,大幅縮短了 60%。 相較 PBC 僅能偵測患者瞳孔直徑對光刺激的反應速度。本研究除了大幅縮短偵測的時間外,在結果分析及應用上更有長足的進步,能判斷出以下的五種身體狀況: (1)瞳孔形狀 (2)虹膜脂質堆積環 (3)鞏膜血絲分布及比例 (4)水晶體混濁與白內障關係 (5)瞳孔直徑對光刺激的反應速度與酒測值的關係 本研究除了藉由偵測瞳孔來判定身體狀況外,更開發出了身體『傷口大小量化』功能。希望協助醫護人員一機在手,即可解決上列的臨床問題。