Investigating the application of nanotechnology for detecting fishes hatching time
Introduction: Using advanced technologies such as nanotechnology in the food and fishery industry, as one of the most important industrial sectors of countries, has received too much attention. Traditionally, fishing and hunting have been considered important sources of supplying food. The subject and methodology: The study aims to investigate nanotechnology for detecting fish hatching time. This is a review article that collects the information from databases such as Sid, civilica, and Google Scholar. In the end, 22 papers were studied for extracting and collecting the required information from the abovementioned scientific database. Finding: After examining the food, drug, and agricultural-related papers published from 2009 to 2020, it was concluded that small Nano-sensors, controlling & monitoring systems made from nanotechnology can be installed on fishing nets, fishing rods, and other fishing equipment. These devices (Nano-sensors and controlling & monitoring systems) will help fishes so that they don’t get caught. In this way, as a fish gets close to the fishing equipment, it will receive sound, smell, or heat-based alarm. Therefore, the fish will stay away from the fishing equipment. The result: according to the finding of this study, it can be concluded that excessive fishing in the hatching time will be avoided by the application of nanotechnology in the fishing equipment. As a result, the following advantages will be secured: 1- There are lots of opportunists who misuse fish during the hatching time. With the application of nanotechnology, they will be stopped. 2- Opportunists are ambushing in different time points to misuse fish. Also, the guards might be ignorant. With the application of nanotechnology, guards are no longer required. 3- This plant is cost-effective too.
The Reproduction success of the Cyprinidae and a Claridae fish species and its impact on small- scale fisheries
To investigate the reproduction success and natural recruitment of several Cyprinidae fish and Claridae fish species in the Allemanskraal Dam. The purpose of the project included investigating whether each individual fish species studied has a successful 2020/2021 spawning season in comparison with each other. Sections of the seine net were measured along with a distance of 10 along the shoreline. The ends of the seine nets were attached to one foot and the top of the net was held by hand. Both volunteers moved in unison while covering the 10m. The volunteer in the “deep end” moved towards the shoreline creating a semi-circle while the other volunteer remained stationary. The two ends of the net were then pulled onto the shore and the fish were collected. The results found that the Labeo Umbratus and Cyprinus carpio had the most successful spawning seasons with the highest recorded numbers. These high numbers of the Labeo Umbratus can be due to the fact that the species lays a large number of eggs. The high numbers of the Cyprinus carpio is due to the lower numbers of the other fish species as previous studies have shown that the species negatively impacts the environment which could in turn negatively impact the other fish species. The Claridae gariepinus and Labeobarbus aeneusas were the lowest. The low numbers of the Labeobarbus aneusas may be due to their slow growth and late maturity rate. The Labeo capensis had an average number relative to the other species and this is due to the fact that during the sampling period the dam was at 100% capacity as this is essential for the survival of the juvenile fish. The hypothesis was accepted as the Labeo Umbratus, Cyprinus carpio and Labeo capensis all have a successful spawning season. However, due to the size of the Cyprinus carpio, they would be most suited for a small scale fishery.
Preparation of a Specific Detector for Aspergillus Niger in Swimming Pools
Swimming pools are one of the transmission routes of superficial and cutaneous fungal infections. Maintenance of environmental hygiene in different parts of swimming pools is of great importance, especially the hygiene of water (1). The conventional fungal detection methods include direct smear preparation, culture, and pathological examinations. However, these methods are not fast enough or do not have sufficient sensitivity (2). Therefore, the present research introduces a novel method for detecting Aspergillus niger in pool water through creating optimal conditions for this fungus, which leads to the citric acid production by the fungus and pH changes of the related culture medium. Four experiments in 10 steps were performed to find the optimal conditions for fungal growth. According to our results, adding each of the variables sucrose, soy, and ferrous sulfate can lead to favorable results. Moreover, the shaker speed increase and fungal aeration are important. Also, we showed that soybean led to the best results compared to other variables. Considering the obtained results, including the shortened detection duration and cost-effectiveness, this method can be presented to the swimming pool owners and pathobiology laboratories as the method of choice for Aspergillus niger detection.
CONTACTLESS AND NON-DESTRUCTIVE DETECTION OF CHICKEN MEAT CONTAMINATION WITH LASER SPECKLE METHOD
Harmful microorganisms in food can cause deterioration of human health, poisoning and in some cases even death. Especially fresh meat and chicken products create a suitable environment for the growth of microorganisms in terms of the nutrients it contains, water activity and pH level. For this reason, detection of microorganisms in meat products is an important issue in terms of food safety and human health. In this project, it is aimed to detect live microorganisms in meat products, especially chicken meat, in a simple, non-destructive, non-contact and fast way using laser speckle method. Laser speckle images of healthy and stale chicken meat were taken, contrast parameter and correlation analysis of the obtained patterns were made. It was observed that the contrast parameter for staled chicken meat increased by approximately 3 times compared to fresh chicken. This increase provides an understanding of the difference between contaminated chicken and fresh chicken. Speckle density changes over time in relation to the movements of living microorganisms. Thus, the correlation in laser speckle density patterns taken from contaminated tissues is disrupted. In the measurements taken with photodiode, by analyzing the change of light intensity of the speckle patterns on fresh and contaminated tissues over time, the detection of microorganisms was made easier and more precisely without the need for image processing. The proposed measurement system is a new method that detects meat contamination with laser speckle imaging. It can be developed and made portable and can be used easily in homes. Since it is a simple, non-destructive and fast method, it can be used to determine the shelf life of meat in food distribution places and markets. In addition, it has the potential to be calibrated and used for other food products other than meat products. The system developed with this study is cheap and easy to use, and the laser speckle imaging method is used in a different field other than biomedical, contributing to the literature.