A New Method For Microplastic Removal and Optical Measurement
Microplastics are tiny invisible plastic pieces that are piling up in the marine environment emerging as one of the many environmental issues which our planet is facing today. Researches for the removal of these particles are important because studies that have been made so far haven't come up with an effective solution. This project aimed to detect microplastics and remove them from aqueous environments with an effective and practical method then it was aimed to determine the removal amount of microplastics by optical measurements with the developed system. Firstly, the magnetic carbonanotubes (m-CNT) which is intended to hold onto the surfaces of microplastics was synthesized and added to the mixture of microplastics. Then the magnet within a glass tube was passed through the mixture and the sample was cleared of microplastics. A spectrometer was made to monitor this process and after its calibration, it was used to measure coffees with different concentrations. It has been shown that their concentrations can be determined by calculating the transmission values and Rayleigh scattering. In the end, it has shown that there are no micro or nano-sized plastic particles when removed with M-CNT, within the accountable range of the spectrometer that had been made. Hence the removal of the microplastics: an invisible threat for the environment has been studied by combining nanomaterials with unique surface properties in the removal process and an optical principle such as Rayleigh scattering, a new technique has been developed that can measure quickly, economically,
Prismalla: Mist water collector
The lack of drinking water in human settlements triggers a series of problems that are linked and affect the development of humanity: health problems, lack of water security for companies, lack of jobs, insecurity, among others. We observe this problem in the communities of the municipality of Las Vigas de Ramírez, Veracruz, where there is a great problem with the water supply, although there is a high presence of mist. Faced with this situation, we undertook the task of investigating a water harvesting method that is easy to implement, operate and maintain. We investigated and analyzed the methods of mist condensation through physical barriers, finding that the polyethylene shadow mesh was the means to achieve this, because it allows the passage of the wind, it is very light, easy to manipulate and above all that it presents the phenomenon of percolation that allows water droplets of various diameters to be accommodated therein. We designed a device that allows to present a mist catchment area through a prismatic structure enabled with meshes and condensed water receivers, portable, easy to use and maintenance and very economical with a performance of 20 liters per day. To achieve our project, factors such as air humidity, dew point, wind speed and direction, height, temperatures and available spaces must be considered.
Expectations for extension of cell life and next generation anticancer drugs by using secondary metabolites of actinomycetes
Inhibitory effects of the secondary metabolite of actinomycete were examined on cell cycle of the yeasts of S. pombe and S. cerevisiae. The secondary metabolite was obtained from cultivation of the actinomycete isolated from the soil of Owakudani in Hakone, Japan. The fifth fraction of the secondary metabolite by ODS column separation (HK-T5), which was soluble to pure methanol, was used in the present experiments. The HK-T5 brought about the delay of forming colonies of S. pombe for about 11 days compared to that cultivated without the HK-T5. The delay of the colony formation was longer for the S. pombe cultivated with more amount of the HK-T5. The cultivation with HK-T5 also brought about the extension of the lifespan of the S. pombe for more than 10 weeks in a liquidus medium. The cell life recovered the ordinary manner by removal of the HK-T5, meaning that the activities of the HK-T5 is reversible. These facts confirm the suppression of cell cycle, and the delay of cell growth by the HK-T5. These phenomena were similarly observed for S. cerevisiae. Comparison of the action of HK-T5 with hydroxyurea, which is an anticancer drug inhibiting the cell cycle at S phase, clarified that the inhibitory action of HK-T5 worked at the phase earlier than S phase. The combined effects of HK-T5 on the cell cycle were evaluated with triamcinolone acetonide (TA), or aspirin, the former of which is a drug synchronizing cancer cells in S phase, and the latter keeping human cells in G1/G0 phases. The combined use of HK-T5 with TA synchronized the cells at the phase slightly proceeding from G1 to S phase without toxicity. On the other hand, the combined use with aspirin made the inhibitory effect of HK-T5 inactive. Hence, the HK-T5 is attractive as a drug for the extension of cell lifespan, and anticancer therapy.
Development of an Android Application for Triage Prediction in Hospital Emergency Departments
Triage is the process by which nurses manage hospital emergency departments by assigning patients varying degrees of urgency. While triage algorithms such as the Emergency Severity Index (ESI) have been standardized worldwide, many of them are highly inconsistent, which could endanger the lives of thousands of patients. One way to improve on nurses’ accuracy is to use machine learning models (ML), which can learn from past data to make predictions. We tested six ML models: random forest, XGBoost, logistic regression, support vector machines, k-nearest neighbors, and multilayer perceptron. These models were tasked with predicting whether a patient would be admitted to the intensive care unit (ICU), another unit in the hospital, or be discharged. After training on data from more than 30,000 patients and testing using 10-fold cross-validation, we found that all six models outperformed ESI. Of the six, the random forest model achieved the highest average accuracy in predicting both ICU admission (81% vs. 69% using ESI; p<0.001) and hospitalization (75% vs. 57%; p<0.001). These models were then added to an Android application, which would accept patient data, predict their triage, and then add them to a priority-ordered waiting list. This approach may offer significant advantages over conventional triage: mainly, it has a higher accuracy than nurses and returns predictions instantaneously. It could also stand-in for triage nurses entirely in disasters, where medical personnel must deal with a large influx of patients in a short amount of time.
The Use of Brine Shrimp to Test for Water Pollutants
The use of brine shrimp nauplii to test for the overall toxicity of sediment samples is proposed. Brine shrimp nauplii were cultured with different concentrations of heavy metals, including chromium (III), copper (II), nickel, lead and zinc, and organic pollutants, including triclosan, oxybenzone, octinoxate and bisphenol A. The brine shrimp nauplii were observed under a dissection microscope to determine the death rate. Results showed that brine shrimp nauplii are more sensitive to copper, cadmium, bisphenol A and oxybenzone. The LC50 (24h) are 55.5, 24.9, 5.6 and 2.7 ppm respectively. Zinc is likely to have synergistic toxic effect with nickel or lead. The synergistic toxic effects of other heavy metals and organic pollutants should be confirmed with further investigations. Brine shrimp nauplii were treated with extracts from sediment samples collected from the oyster culture zone of the Deep Bay, namely Pak Nei, Sha Kiu Tsuen and Hang Hau Tsuen. The sediment samples were extracted with neutral sodium acetate to dissolve the exchangeable heavy metal ions and some organic pollutants. The death rate of brine shrimp nauplii treated with the sediment extract of Hang Hau Tsuen was similar to 1 ppm PBA. It was also about 10 to 20% higher than that of the other two sites (Pak Nei and Sha Kiu Tsuen). Since Hang Hau Tsuen is closer to the residential area and Lau Fau Shan Seafood Market than the other two sites, its sediment sample is likely to have a higher level of environmental pollutants. The results suggest that brine shrimp nauplii may be used as a biomarker to monitor the environmental changes in the overall level of pollutants in sediment samples.
Properties of possible counterexamples to the Seymour's Second Neighborhood Conjecture
The project is devoted to the study of the Seymour’s Second Neighborhood conjecture by determining the properties of possible counterexamples to it. This problem has remained unsolved for more than 30 years, although there is some progress in its solution. The vector of the research is aimed at the analysis of possible counterexamples to the conjecture with the subsequent finding of some of their characteristic values. In addition, attention is focused on the generalized Seymour’s conjecture for vertex-weighted graphs. Combinatorial research methods and graph theory methods were used in the project. The author determines the values of densities and diameters of possible counterexamples, considers separately directed graphs of diameter 3. The conditions under which specific graphs cannot be counterexamples to the Seymour’s conjecture with the minimum number or vertices are defined. The relationship between the Seymour’s conjecture and vertex-weighted Seymour’s conjecture is explained. It is proved that if there exists at least one counterexample, then there exist counterexamples with an arbitrary diameter not less than 3. Under the same condition, the existence of counterexamples with a density both close to 0 and close to 1 is also proved. The equivalence of the above two conjectures is substantiated in detail. It can be concluded that if the Seymour’s Second Neighborhood Conjecture is true for a directed graph of diameter 3, then it is true for any digraph, so that problem will be solved. Moreover, if the conjecture is true, then vertex-weighted version of this conjecture is true too. That is why a digraph of diameter 3 needs further research.