Generating Conditioned Air in an Open Space in Accordance with Sustainable Architecture Criteria (Based on Wind-Catchers)
Nowadays, cooling open spaces in hot seasons without using fossil fuels has gained a lot of attention. In this regard, natural air conditioning is a great method for conserving energy that can be used for reducing energy consumption and environmental pollution. Structures like windcatchers are used for natural air conditioning as a building component in warm climates since they are placed in the path of the wind and direct the wind to play a significant role in reducing the temperature. The main objective of the current study is to explore air conditioning in open spaces based on sustainable architecture. The current study reviews the relevant literature from credible journals, and it includes studies with relevant subjects published from 1851 to 2021. The findings show that implementing this design project can result in significant advances in terms of reducing humidity, removing dust and insects from the air, conserving energy, reducing the global temperature, using renewable energies, and producing conditioned air for the area
CONTACTLESS AND NON-DESTRUCTIVE DETECTION OF CHICKEN MEAT CONTAMINATION WITH LASER SPECKLE METHOD
Harmful microorganisms in food can cause deterioration of human health, poisoning and in some cases even death. Especially fresh meat and chicken products create a suitable environment for the growth of microorganisms in terms of the nutrients it contains, water activity and pH level. For this reason, detection of microorganisms in meat products is an important issue in terms of food safety and human health. In this project, it is aimed to detect live microorganisms in meat products, especially chicken meat, in a simple, non-destructive, non-contact and fast way using laser speckle method. Laser speckle images of healthy and stale chicken meat were taken, contrast parameter and correlation analysis of the obtained patterns were made. It was observed that the contrast parameter for staled chicken meat increased by approximately 3 times compared to fresh chicken. This increase provides an understanding of the difference between contaminated chicken and fresh chicken. Speckle density changes over time in relation to the movements of living microorganisms. Thus, the correlation in laser speckle density patterns taken from contaminated tissues is disrupted. In the measurements taken with photodiode, by analyzing the change of light intensity of the speckle patterns on fresh and contaminated tissues over time, the detection of microorganisms was made easier and more precisely without the need for image processing. The proposed measurement system is a new method that detects meat contamination with laser speckle imaging. It can be developed and made portable and can be used easily in homes. Since it is a simple, non-destructive and fast method, it can be used to determine the shelf life of meat in food distribution places and markets. In addition, it has the potential to be calibrated and used for other food products other than meat products. The system developed with this study is cheap and easy to use, and the laser speckle imaging method is used in a different field other than biomedical, contributing to the literature.
Solving Mathematical and Chemical Equations using Python
Max Gold's project, titled “Solving Mathematical and Chemical Equations using Python”, is a website comprising of 4 main programmes: one to find the smallest possible combination of two chemical compounds or elements; a self-made parsing function to convert a chemical equation into a matrix, then using Gaussian-Jordan elimination to find coefficients for an equation; a programme to parse a mathematical expression and use that parsed expression in algebraic division of an algebraic dividend of nth degree polynomial by a divisor of 1st degree polynomial; finally, a programme to solve binomial equations for the power s∈Q. This website was originally made so that Max Gold could improve his programming skills for GCSE computer science but expanded to incorporate his passion for chemistry and maths and thus allow others to use these programmes to help them with their problems as well. A problem with many conventional calculator websites is their lack of specificity – they tend to be able to compute some functions but not all. These programmes are tailored to GCSE and A level maths and chemistry, meaning this website provides an outlet to compute specific topics of problems.
Locus of the Points on Circumference of the n-th Circle that Formed by Moving the Center of any Radius Circles on the Outermost Circumference of Preceding set of Circles
This project aimed to study the motion which occurred from the end point on the circumference of the outermost circle by moving the center on the circumference of a preceding circle and the center of an innermost circle at origin. According to the study, when angular velocity was changed, it caused the different of loci. Based on the above information, finding the locus of the point on circumference of n-th circle that formed by moving the center of any radius circles on circumference of preceding set of circles was studied to get general equation. A set of circle and locus were created with GSP program. First, set the same radius circles on the X-axis with the first circle at origin, then found the relationship that occurred from the characteristics of locus. The result showed that if the ratios of angular velocity are 1:1:1, 2:2:2, 3:3:3, ..., …, n:n:n or 1:2:3, 2:4:6, 3:6:9, …,nw1:nw2:nw3, the characteristics of locus will be the same, while the others will be different. Finally, the equation of locus was found as follow: (x,y) = { ..........see in abstract...........} when .........see in abstract........... Where ri is the radius of i-th circle, zeta i is an angle between the radius of i-th circle and X-axis, wi is the angular velocity, t is elapsed time and alpha i is a starting angle between the radius of i-th circle and X-axis.
Investigating the application of nanotechnology for detecting fishes hatching time
Introduction: Using advanced technologies such as nanotechnology in the food and fishery industry, as one of the most important industrial sectors of countries, has received too much attention. Traditionally, fishing and hunting have been considered important sources of supplying food. The subject and methodology: The study aims to investigate nanotechnology for detecting fish hatching time. This is a review article that collects the information from databases such as Sid, civilica, and Google Scholar. In the end, 22 papers were studied for extracting and collecting the required information from the abovementioned scientific database. Finding: After examining the food, drug, and agricultural-related papers published from 2009 to 2020, it was concluded that small Nano-sensors, controlling & monitoring systems made from nanotechnology can be installed on fishing nets, fishing rods, and other fishing equipment. These devices (Nano-sensors and controlling & monitoring systems) will help fishes so that they don’t get caught. In this way, as a fish gets close to the fishing equipment, it will receive sound, smell, or heat-based alarm. Therefore, the fish will stay away from the fishing equipment. The result: according to the finding of this study, it can be concluded that excessive fishing in the hatching time will be avoided by the application of nanotechnology in the fishing equipment. As a result, the following advantages will be secured: 1- There are lots of opportunists who misuse fish during the hatching time. With the application of nanotechnology, they will be stopped. 2- Opportunists are ambushing in different time points to misuse fish. Also, the guards might be ignorant. With the application of nanotechnology, guards are no longer required. 3- This plant is cost-effective too.
Line Following Waiter Robot
Technology is erratic. We never know what could be the next big thing. Nowadays, IoT (the internet of things) has taken over the market. Every technology created nowadays is somehow related to IoT. You should manage to connect the IoT technology with a robust area of hospitality. Catering customers' needs during peak hours at any restaurant or cafe could get overwhelmed with hectic tasks such as taking orders, fetching water, and ordering meals. We created a raw model to accommodate the limitations of the human mind. The technology-based IoT (Internet of things) can come in handy during hectic sessions. A Robot waiter is built from scratch using materials like Arduino (2), Gear DC motor (2), L298N motor driver (1), Ultrasonic sensor (2), IR sensor (2), Servo motor (4) HC-05 Bluetooth module. Desired orders are sent on a wireless network through the menu bar to the kitchen. Then, the robots transfer the food from the kitchen to the customers. The floor will be all white, while there will be a strip of black line to connect every sitting and the kitchen. For instance, if table number three is to be served, we click the number three in the app, which renders an obstacle in table 3. The motor barricades the robot, and the ultrasonic sensors sense it, and it stops. If anyone picks the plate, the ultrasonic sensor senses it, the blockage is removed, and the robot paces in the designated path. People visited the place more often to experience such stimuli. Using the robots attracted more customers and made the work very quick.
PVA unveiled the actual role of starch in the Briggs-Rauscher reaction
The Briggs Rauscher reaction (BR reaction) is one of the famous oscillating reactions; the aqueous mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch exhibit color change between yellow and blue-purple repeatedly. The blue-purple color formation is due to the iodine test reaction caused by inclusions of polyiodides such as I3- and I5- in the helical structure of starch. Therefore, starch has been regarded as only an indicator in the BR reaction. But our seniors have found that the oscillation did not last without starch. They hypothesized that starch’s linear helical framework is necessary to elongate the lifetime of the oscillating reaction. If this hypothesis is correct, similar BR-type oscillations must be observed when other polymers with helical structures are used instead of starch. We found the literature which reports that polyvinyl alcohol (PVA) forms a helical structure and indicates the iodine test reaction. In our research, we studied the BR reactions using PVA, with different saponification degrees and viscosities. First, we studied the correlation between the structural features of PVA and the iodine color reaction by spectroscopic approach, exhibiting that PVA with low saponification form helical structures and show the iodine color reactions, which gives red color solutions. Second, we found that additions of the helical-structured PVA to the reaction solution instead of starch induces the BR-type oscillating reactions, while PVA without helical structure induces only a few numbers of oscillations. This is the world-first example of the oscillating reaction using PVA. The oscillation that lasted for 6 minutes with 23 oscillations was almost the same as that of the general BR reaction using starch. We concluded that the polymers with helical structures are intrinsic to elongate the lifetime of the BR reaction. Furthermore, we found that the addition of K3[Fe(CN)6], which has a high redox activity, in the reaction solution with PVA drastically elongated the lifetime (50 min) and increased the numbers of the oscillations (nearly 100 times). This result suggests that the oxidation-reduction reactions by the ferricyanide ion promotes the redox process of iodine and iodide ions.
Preparation of a Specific Detector for Aspergillus Niger in Swimming Pools
Swimming pools are one of the transmission routes of superficial and cutaneous fungal infections. Maintenance of environmental hygiene in different parts of swimming pools is of great importance, especially the hygiene of water (1). The conventional fungal detection methods include direct smear preparation, culture, and pathological examinations. However, these methods are not fast enough or do not have sufficient sensitivity (2). Therefore, the present research introduces a novel method for detecting Aspergillus niger in pool water through creating optimal conditions for this fungus, which leads to the citric acid production by the fungus and pH changes of the related culture medium. Four experiments in 10 steps were performed to find the optimal conditions for fungal growth. According to our results, adding each of the variables sucrose, soy, and ferrous sulfate can lead to favorable results. Moreover, the shaker speed increase and fungal aeration are important. Also, we showed that soybean led to the best results compared to other variables. Considering the obtained results, including the shortened detection duration and cost-effectiveness, this method can be presented to the swimming pool owners and pathobiology laboratories as the method of choice for Aspergillus niger detection.
Method of prosthetic vision
This work is devoted to solving the problem of orientation in the space of visually impaired people. Working on the project, a new way of transmitting visual information through an acoustic channel was invented. In addition, was developed the device, which uses distance sensors to analyze the situation around a user. Thanks to the invented algorithm of transformation of the information about the position of the obstacle into the sound of a certain tone and intensity, this device allows the user to transmit subject-spatial information in real time. Currently, the device should use a facette locator made of 36 ultrasonic locators grouped in 12 sectors by the azimuth and 3 spatial cones by the angle. Data obtained in such a way is converted into its own note according to the following pattern : the angle of the place corresponds to octave, the azimuth corresponds to the note and the distance corresponds to the volume. The choice of the notes is not unambiguous. However, we used them for the reason that over the centuries, notes have had a felicitous way of layout on the frequency range and on the logarithmic scale. Therefore, the appearance of a new note in the total signal will not be muffled by a combination of other notes. Consequently, a blind person, moving around the room with the help of the tone and volume of the sound signals, will be able to assess the presence and location of all dangerous obstacles. After theoretical substantiation of the hypothesis and analysis of the available information, we started the production of prototypes of the devices that would implement the idea of transmitting information via the acoustic channel.