全國中小學科展

2022年

A New Method For Microplastic Removal and Optical Measurement

Microplastics are tiny invisible plastic pieces that are piling up in the marine environment emerging as one of the many environmental issues which our planet is facing today. Researches for the removal of these particles are important because studies that have been made so far haven't come up with an effective solution. This project aimed to detect microplastics and remove them from aqueous environments with an effective and practical method then it was aimed to determine the removal amount of microplastics by optical measurements with the developed system. Firstly, the magnetic carbonanotubes (m-CNT) which is intended to hold onto the surfaces of microplastics was synthesized and added to the mixture of microplastics. Then the magnet within a glass tube was passed through the mixture and the sample was cleared of microplastics. A spectrometer was made to monitor this process and after its calibration, it was used to measure coffees with different concentrations. It has been shown that their concentrations can be determined by calculating the transmission values and Rayleigh scattering. In the end, it has shown that there are no micro or nano-sized plastic particles when removed with M-CNT, within the accountable range of the spectrometer that had been made. Hence the removal of the microplastics: an invisible threat for the environment has been studied by combining nanomaterials with unique surface properties in the removal process and an optical principle such as Rayleigh scattering, a new technique has been developed that can measure quickly, economically,

分子拓印修飾磁性奈米粒子萃取福壽螺卵中蝦紅素之探討

本研究以二氯化鐵和三氯化鐵所合成之磁性奈米粒子為基底,包覆上以蝦紅素為模板修飾的二氧化矽,製作出具有蝦紅素專一性的磁性奈米粒子,應用於萃取福壽螺卵中之蝦紅素。 利用干擾物證明磁性奈米萃取粒子具有蝦紅素的專一性,再探討奈米粒子合成及萃取條件的影響。福壽螺卵經過打碎離心後,依序加入0.2 M氫氧化鈉及1 mM十二烷基硫酸鈉,使蝦紅素水解並去脫去蛋白質轉換為游離態。當模板濃度為0.059 mg/mL、TEOS濃度為1.892 mg/mL和蝦紅素的濃度為0.07 mg/mL時,會有最佳的萃取率達60.7 %。此磁性奈米粒子在萃取步驟後,再以丙酮進行脫附,至少重複使用3次。此技術可減少福壽螺的農害,也極具經濟價值,很值得研究。

Properties of possible counterexamples to the Seymour's Second Neighborhood Conjecture

The project is devoted to the study of the Seymour’s Second Neighborhood conjecture by determining the properties of possible counterexamples to it. This problem has remained unsolved for more than 30 years, although there is some progress in its solution. The vector of the research is aimed at the analysis of possible counterexamples to the conjecture with the subsequent finding of some of their characteristic values. In addition, attention is focused on the generalized Seymour’s conjecture for vertex-weighted graphs. Combinatorial research methods and graph theory methods were used in the project. The author determines the values ​​of densities and diameters of possible counterexamples, considers separately directed graphs of diameter 3. The conditions under which specific graphs cannot be counterexamples to the Seymour’s conjecture with the minimum number or vertices are defined. The relationship between the Seymour’s conjecture and vertex-weighted Seymour’s conjecture is explained. It is proved that if there exists at least one counterexample, then there exist counterexamples with an arbitrary diameter not less than 3. Under the same condition, the existence of counterexamples with a density both close to 0 and close to 1 is also proved. The equivalence of the above two conjectures is substantiated in detail. It can be concluded that if the Seymour’s Second Neighborhood Conjecture is true for a directed graph of diameter 3, then it is true for any digraph, so that problem will be solved. Moreover, if the conjecture is true, then vertex-weighted version of this conjecture is true too. That is why a digraph of diameter 3 needs further research.

蘭陽溪口溼地以及五十二甲溼地水質分析與比較

本研究區域為蘭陽溪口溼地與五十二甲溼地,各選擇5和6個採樣點,檢測水體中的溶氧度、pH值、導電度、總固體溶解量(TDS)、水溫以及濁度並記錄當時氣溫。 在蘭陽溪口溼地中我們發現越靠近出海口,導電度、TDS越高。採樣點4濁度為最高,猜想可能與位置有關。五十二甲溼地中則以採樣點6的導電度、TDS為最高,濁度、pH值及溶氧量則是採樣點3最高。我們還藉由五十二甲濕地分區使用圖,比較人為因素對水質的影響。採樣點3為遊客休憩區,測得的濁度、pH值皆較高,採樣點6為生態區,測值相對較小,推測人為因素與水質有關聯。最後,在10月10日的數據中,發現蘭陽溪口溼地的導電度特別高,推測潮汐現象為可能造成此現象的因素,也是未來研究的方向。

A New Method For Microplastic Removal and Optical Measurement

Microplastics are tiny invisible plastic pieces that are piling up in the marine environment emerging as one of the many environmental issues which our planet is facing today. Researches for the removal of these particles are important because studies that have been made so far haven't come up with an effective solution. This project aimed to detect microplastics and remove them from aqueous environments with an effective and practical method then it was aimed to determine the removal amount of microplastics by optical measurements with the developed system. Firstly, the magnetic carbonanotubes (m-CNT) which is intended to hold onto the surfaces of microplastics was synthesized and added to the mixture of microplastics. Then the magnet within a glass tube was passed through the mixture and the sample was cleared of microplastics. A spectrometer was made to monitor this process and after its calibration, it was used to measure coffees with different concentrations. It has been shown that their concentrations can be determined by calculating the transmission values and Rayleigh scattering. In the end, it has shown that there are no micro or nano-sized plastic particles when removed with M-CNT, within the accountable range of the spectrometer that had been made. Hence the removal of the microplastics: an invisible threat for the environment has been studied by combining nanomaterials with unique surface properties in the removal process and an optical principle such as Rayleigh scattering, a new technique has been developed that can measure quickly, economically,

Development of an Audio Modulated Tesla Coil

Originally, the Tesla transformer was developed to transmit energy and messages wirelessly. But it did not prove itself for either of these applications, so today it is only used for research purposes. Over time, the Tesla transformer has evolved and improved. Today it is possible with Tesla transformers to generate powerful and highly precise controlled discharges. During operation, impressive high-voltage discharges occur at the transformer. A tesla transformer is basically a high voltage generator that achieves a voltage boost by using two magnetically coupled LC series resonant circuits of the same resonant frequency. The Dual Resonant Solid State Tesla Coil (DRSSTC) built in this work has a high power IGBT half bridge module to excite the primary resonant circuit at the resonant frequency. The IGBTs are driven in such a way that audible pressure waves, and therefore music, are generated by the electrical discharges at the high voltage electrode. Within the scope of this work were the following two questions: - How is a DRSSTC designed and built? The DRSSTC system realized in this work is about 80 cm high and reaches about one-meter-long discharges. The design, development, and construction of the transformer are documented in detail and extensively in this thesis. - How does one measure an electrical voltage of 200,000 V, which changes sign more than 100,000 times per second? Two approaches have been taken to measure the voltages. Derived from the energy balance of an ideal capacitor and an ideal coil, a secondary voltage of about 200 kV was calculated via secondary current measurement. The second approach uses a voltage measurement via an in-house developed measuring electrode and a calculated divider ratio between the measured voltage and the secondary voltage. A relatively unrealistic secondary voltage of about 750 kV was measured since the divider ratio depends on approximate values. Nevertheless, the measuring electrode can be used for investigations of the voltage curve, or the divider ratio can be calibrated via the secondary current measurement. The development of such a transformer laid the foundation for much further research and scientific analysis.

The Use of Brine Shrimp to Test for Water Pollutants

The use of brine shrimp nauplii to test for the overall toxicity of sediment samples is proposed. Brine shrimp nauplii were cultured with different concentrations of heavy metals, including chromium (III), copper (II), nickel, lead and zinc, and organic pollutants, including triclosan, oxybenzone, octinoxate and bisphenol A. The brine shrimp nauplii were observed under a dissection microscope to determine the death rate. Results showed that brine shrimp nauplii are more sensitive to copper, cadmium, bisphenol A and oxybenzone. The LC50 (24h) are 55.5, 24.9, 5.6 and 2.7 ppm respectively. Zinc is likely to have synergistic toxic effect with nickel or lead. The synergistic toxic effects of other heavy metals and organic pollutants should be confirmed with further investigations. Brine shrimp nauplii were treated with extracts from sediment samples collected from the oyster culture zone of the Deep Bay, namely Pak Nei, Sha Kiu Tsuen and Hang Hau Tsuen. The sediment samples were extracted with neutral sodium acetate to dissolve the exchangeable heavy metal ions and some organic pollutants. The death rate of brine shrimp nauplii treated with the sediment extract of Hang Hau Tsuen was similar to 1 ppm PBA. It was also about 10 to 20% higher than that of the other two sites (Pak Nei and Sha Kiu Tsuen). Since Hang Hau Tsuen is closer to the residential area and Lau Fau Shan Seafood Market than the other two sites, its sediment sample is likely to have a higher level of environmental pollutants. The results suggest that brine shrimp nauplii may be used as a biomarker to monitor the environmental changes in the overall level of pollutants in sediment samples.

風驅電「極」- 陣列式無扇葉風力發電機

「無扇葉風力發電」是一種新型的能量擷取研究,透過渦流引起的震動將風能轉換成電能。傳統渦輪式風力發電利用風推動扇葉旋轉發電,受限於風向、成本、噪音及體積等問題無法在內陸得到普遍。先前已有外國公司發表初步的機構設計與發想概念,但目前仍只能針對單一風向進行發電。本研究提出新型機構設計,有效的運用了多方向風源,降低了風能的浪費。為了瞭解渦激振動與各項變因之間的關係,我們設計了多項實驗,藉由影像分析軟體Tracker,得出不同風速下桅杆晃動振幅與頻率之關係,並利用實驗分析採集器LabQuest 2,精確的得出單位時間內的平均流速與電壓變化,獲得流速與電壓頻率特性。 根據實驗結果,隨著風速的增長,電機產生的峰值電壓會有2次方的增長,且桅杆晃動頻率與風速和支點位置並無直接關係。

Anti-bacterial Crab bio-bandages with Bio-dressings 2.0

Commercially available bandages such as hydrocolloid are neither biodegradable nor anti-bacterial. Chitin is known to be the second most naturally available polysaccharide which could be transformed to chitosan which is known to be anti-bacterial (Hasan, 2018) (Chao, 2019) and haemostatic (Okamoto, 2003) (Hu, 2018). Chitosan can be further converted to hydrogel which is bio-degradable and has good water absorbance. Anti-bacterial crab bio-bandages and crab bio-dressings should be bio-degradable as it took 42 days and a month for complete bio-degradation respectively, so they should be better than commercial bandages such as Nexcare Hydrocolloid as the disposal of anti-bacterial crab bio-bandages with bio-dressings would no longer pose burden to landfilling or threat to our environment. Anti-bacterial crab bio-bandages with bio-dressings are anti-bacterial with degree of deacetylation of DD% (measured using FTIR Spectrum II) 82.6% (due to the presence of chitosan) even without the application of other anti-bacterial agents and hence can provide complete protection of wounds from skin and soft tissues infections and haemostatic (due to the presence of chitosan). After testing and certification based on IS997:2004 and BS EN 13726-1, they should meet many requirements specified. Anti-bacterial crab bio-bandages should be eligible for marketing. Some results were as follows: 1.4 Anti-bacterial effect of crab hydrogels and roasted crab hydrogels Pure chitosan, crab chitosan, crab hydrogels and roasted crab hydrogels showed significant anti-bacterial effect. NO oral bacterial colonies were present in drinking water with crab hydrogels. Thus crab hydrogels could serve as effective anti-bacterial wound dressings. 1.6 Basing on IS997:2004 standard, the load per unit of area of anti-bacterial bio-bandages was 342g/m2 which met the minimum requirement of 36g/m2, the anti-bacterial bio-bandages had stronger tension strength (>20N both in dry and wet conditions) than commercial hydrocolloid. (2.7N dry 2.8N wet) which was comparable with that required (50-67N) and pH of about 7 which met the pH range of 4.5-8. 1.7 The FSA Free-Swell Absorbency of synthetic blood of crab hydrogel bio-dressings was 1.86g per 5cm x 5cm dressing which was much higher than that of commercial hydrocolloid (0.299g per 5cm x 5cm dressing) based on BS EN 13726-1.

Solving Mathematical and Chemical Equations using Python

Max Gold's project, titled “Solving Mathematical and Chemical Equations using Python”, is a website comprising of 4 main programmes: one to find the smallest possible combination of two chemical compounds or elements; a self-made parsing function to convert a chemical equation into a matrix, then using Gaussian-Jordan elimination to find coefficients for an equation; a programme to parse a mathematical expression and use that parsed expression in algebraic division of an algebraic dividend of nth degree polynomial by a divisor of 1st degree polynomial; finally, a programme to solve binomial equations for the power s∈Q. This website was originally made so that Max Gold could improve his programming skills for GCSE computer science but expanded to incorporate his passion for chemistry and maths and thus allow others to use these programmes to help them with their problems as well. A problem with many conventional calculator websites is their lack of specificity – they tend to be able to compute some functions but not all. These programmes are tailored to GCSE and A level maths and chemistry, meaning this website provides an outlet to compute specific topics of problems.