全國中小學科展

2022年

全臺新記錄種皺家蟻特徵、習性及其偷懶行為之研究

本研究藉由觀察及設計掉落式陷阱分析校園內螞蟻生物多樣性,發現校園螞蟻種類多達12種,而其中「新皺家蟻」經專家鑑定為全臺新記錄,而其特徵與同屬螞蟻不同處為觸角節數,「新皺家蟻」為11節,其餘皆為12節;而前伸腹節刺與同屬蟻種均不相同,「新皺家蟻」及日本皺家蟻皆為一巢多后制,前者依營養需求轉換進食對象,後者偏好肉類蛋白質。在養殖時發現其反抗能力相對於同屬蟻種差,且工蟻大多時候都在偷懶,深入探討後發現牠們是在等待任務,但當積極工蟻疲勞時或危急情況發生時,承當替補或應對者。由於偷懶工蟻在特定情況下變得積極,故以「行為次數」進行分析比「偷懶工蟻比例」更能呈現工蟻的偷懶程度,新皺家蟻偷懶行為發生率約84%,偷懶工蟻比例約40%。工蟻越接近死亡越不偷懶,但偷懶行為不受族群組成影響。而雄、雌蟻只負責延續族群。

壓電-摩擦感測器配合CNN進行步態分析及身分識別

我們設計了一款透過壓電片與摩擦片收集資料的智慧鞋,壓電片嵌入在鞋底,摩擦片安裝在前腳掌,兩者並聯。當人行走時,感測器會被擠壓變形,藉由DAQ(數據採集)收集感測器的電壓輸出,可顯示出正常步行、快走、慢跑和漫步等活動的訊息,利用時變電壓形式的輸出數據,與能夠識別時域信號的CNN深度學習(卷積神經網絡)進行不同類型步態辨識。 實驗結果顯示此方法可以辨檢測這四種步態,其辨識率高達95%。訓練好的CNN可同時辨識個人身份與步態。結果顯示,識別快走時辨識率極高,識別正常步行和漫步時辨識率為90%,識別慢跑時辨識率僅達49%。因此,我們未來預計將提高同時辨識不同受試者與不同步態之辨識率,並透過壓電能量擷取器為藍牙模組供電。

以非金屬催化劑降解rPLA應用於合成類玻璃高分子

聚乳酸(PLA)為廣泛應用於冷飲杯之生物可分解材料。然而,在自然條件下完全降解PLA需至少80年。本研究可達到快速回收並即時轉化為高值化產品的目標。 本研究欲將廢棄PLA應用於Vitrimer的合成。第一階段實驗使用有機催化劑PLADEG醇解回收PLA,探討溫度、催化劑濃度、雙醇種類對降解效率的影響,並與其他研究的催化劑效果比較。實驗結果顯示:以莫耳數比例rPLA: diol:催化劑 = 1 : 6.45 : 0.25,在140°C時,30分鐘即可完全降解PLA。且減壓蒸餾所回收之雙醇與催化劑仍能用於另一批次rPLA之降解。 第二階段實驗以降解得到之乳酸雙醇合成類玻璃高分子。合成方法的第一途徑為利用乳酸雙醇、丙交酯、季戊四醇先進行預聚合,再利用雙異氰酸酯作為鏈延長劑。第二途徑則是加入丁二酸、季戊四醇先行縮合聚合,同樣再利用雙異氰酸酯作為鏈延長劑,探討反應過程。

多工奈米複合材料合成與其協同治療應用

本研究結合奈米合成技術及生物醫學應用,以牛血清蛋白(BSA)為載體,裝載具化學動力療法的金屬氧化物(CuFe2O4, CFO)及具光治療功能的光敏劑(IR780),製備CFO@BSA-IR780多功能奈米複合材料。 材料鑑定方面由TEM、DLS與UV-Vis等儀器進行組成及光學性質分析。特性方面,CuFe2O4在腫瘤環境由芬頓反應,促使H2O2產生活性極高的氫氧自由基(•OH)。並且IR780在近紅外光照射下同時具光熱與光動力治療特性,可殺死癌細胞。同時CuFe2O4中的Fe3+ 和Cu2+ 進行氧化還原將腫瘤部位的穀胱甘肽(GSH)轉化成氧化型穀胱甘肽,強化化學動力療法及光動力治療效果。 最後,本研究將CFO@BSA-IR780奈米材料實際運用於细胞毒性測試與細胞螢光顯影,確認其效果及低毒性。成功發展出同時具備化學動力療法、光動力治療、光熱治療及細胞螢光顯影之多功能奈米複合材料,期許在醫學治療提供一項新興藥物材料。

坐標平面上的格點多邊形性質

先前有許多人探討了坐標平面上格點正方形、格點直角三角形的性質,卻沒有人用數學的方式將此主題推廣到各種多邊形,格點多邊形性質便一直被歸類於資訊研究,目標變為預測當邊數很多或範圍很大時的估計值,因此本研究的目的在於用數學化的方式探討在坐標平面上每個頂點坐標皆為整數的多邊形性質,並推導出能算出精確值的通解。 本文探討的多邊形包含了凹多邊形及凸多邊形,研究者提出繪製格點多邊形的「迂迴作圖法」並成功推導出格點多邊形的範圍條件、範圍內最多邊的格點多邊形邊數、面積極值、周長極值的通解,並找出了部分多邊形的周長極大值與個數。運用本研究的結果,將有助於在有限區域或空間中依照特定規律設計最大路徑,例如遊樂場的迷宮與雲霄飛車軌道。

Bio-Circular-Green Superabsorber

As the world has become concerned about the global waste crisis and global warming, there has been a surge of research within materials science to find materials that would replace plastic, such as bioplastics or biodegradable materials, in order to reduce environmental pollution. Plastics generates the microplastics that allowed them to become cross contamination enter the ocean through land, sea and river. Science research found (Lusher et al. (2017)) over 220 species of marine animals ingested microplastic, half of them are considered relevant for commercial purpose and increasing the risk of human consumption as it can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. Thailand is also experiencing such a challenge, as seen by the overabundance of plastic waste that might take centuries to decompose. For example, around 1680 million personal hygiene products such as diapers, sanitary napkins, and tampons are used each year. This study highlights the use of naturally accessible absorbent fibers from malva nut (Scaphium scaphigerum) (G. Don) Guib & Planch.), which is widely available and biodegradable in nature and has a low carbon footprint. This study also aimed to develop natural absorbent pads using compostable spun, external layers, and biodegradable glue. A prototype sanitary napkin with biodegradable absorbent pads was developed and evaluated for absorption ability, absorption rate, pH, and biodegradability. The absorbent material absorbed up to 19 times its weight in 2 minutes and 33 times its weight in 2 hours, which is enough for an average of 80-150 mL of menstrual blood. The prototype napkin deteriorated within 99 days, based on naked eye observation. Some signs of degradation and microorganisms growing on the prototype were also observed from scanning electron microscopic images. According to the findings, natural absorbent pads made from malva nut have the potential to be converted into sanitary napkins. Furthermore, it is proposed that the components, which include superabsorbent renewable materials, spinning compostable layer, external compostable layer and biodegradable glue, may be used in a variety of goods, including adult diaper pants, incontinence pads, and laboratory bench mats.

A.N.T.s: Algorithm for Navigating Traffic System in Automated Warehouses

According to CNN Indonesia 2020, the demand for e-Commerce in Indonesia has nearly doubled during this pandemic. This surge in demand calls for a time-efficient method for warehouse order-picking. One approach to achieve that goal is by incorporating automation in their warehouse systems. Globally, the market of warehouse robotics is expected to reach 12.6 billion USD by 2027 (Data Bridge Market Research, 2020). In this research, the warehouse system studied would utilize AMR (Autonomous Mobile Robots) to lift and deliver movable shelf units to the packing station where workers are at. This research designed a heuristic algorithm called A.N.T.s (Algorithm for Navigating Traffic System) to conduct task assigning and pathfinding for AMR in the automated warehouse. The warehouse layout was drawn as a two-dimensional map in grids. When an order is placed, A.N.T.s would assign the task to a robot that would require the least amount of time to reach the target shelf. A.N.T.s then conducted pathfinding heuristically using Manhattan Distance. A.N.T.s would help the robot to navigate its way to the target shelf unit, lift the shelf and bring it to the designated packing station. A.N.T.s algorithm was tested in various warehouse layouts and with a varying number of AMRs. Comparison against the commonly used Djikstra’s algorithm was also conducted (Shaikh and Dhale, 2013). Results show that the proposed A.N.T.s algorithm could execute 100 orders in a 27x23 layout with five robots 9.96 times faster than Dijkstra with no collisions. The algorithm is also shown to be able to help assign tasks to robots and help them find short paths to navigate their ways to the shelf units and packing stations. A.N.T.s could navigate traffic to avoid deadlocks and collisions in the warehouse with the aid of lanes and directions.

「塑」戰「塑」決────Aspergillus屬分解塑膠能力測試

本研究選用Aspergillus tubingensis、Aspergillus oryzae、Aspergillus japonicus 三種真菌作為研究對象,將實驗分為兩個部分,一為三種真菌是否能降解PU、PE、PLA三種塑膠,結果發現Aspergillus tubingensis在黑暗中皆能降解塑膠而效果為PU、PE>PLA,Aspergillus oryzae 與Aspergillus japonicus則有降解PU與PLA之能力。二為探討Aspergillus tubingensis在不同色光及不同pH值下降解塑膠的效果,結果發現Aspergillus tubingensis 在相同色光不同瓦數情況下,降解PLA的能力為3W>1W,降解PU則是1W>3W;相同瓦數的情況,降解PU能力為白光>紅光>藍光,降解PLA能力為紅光>白光>藍光;在pH=4及pH=9環境中皆無明顯降解塑膠之能力。

Study of Ferrofluid and Magnetic Fields

鐵磁流體同時具有液體的流動性和固體磁性材料的磁性,由磁性微粒、界面活性劑以及載液混合形成的膠體液體。本報告探討鐵磁流體的製備過程,在化學共沉法中改變滴入氨水的濃度 (pH 值),建立一套標準稀釋氨水 pH 值量表。為了研究產物之間的差異,將產物進行 SEM 拍攝與 XRD 分析。 本研究使用低成本自製磁力測量裝置,測量磁力數值繪製多張圖表進行分析。從對磁場研究的過程發現鐵磁流體在受磁鐵吸引時會產生類似泰勒錐之錐體,架設自製觀測設備,觀察多種變因對錐體行為之影響,同時對錐體進行數值分析。此點乃為本研究提出創新科學設計。 未來將探討粒徑對製成鐵磁流體性質的影響,並以更精確的方式探討鐵磁流體在磁場下的受力分析圖。探討鐵磁流體之導電性,分析應用於現有電漿裝置之可能性,期望改良目前的電漿產生裝置中高汙染且不可撓曲的缺點。

以磁性Fe3O4分離微塑膠的成效與機制探討

微塑膠因為其密度小、表面積大之特性可吸附有害物質,並傳播至各地,而對人體和環境造成危害,故回收微塑膠是科學家研究的重要主題。本實驗發現:在中性50 mL水樣品中回收以砂紙磨製的微塑膠時,加入0.050克的Fe3O4和1~2 mL乙酸乙酯或正己烷後,微塑膠、有機溶劑和Fe3O4可互相吸附,再用磁鐵將三者同時吸出而與水分離,可達到清除微塑膠的效果,不同微塑膠(PP、PET、HDPE和PETG)的清除效果皆可高於89%以上。 而在中性的50 mL水樣品中,回收較大顆粒之微塑膠(顆粒大小介於0.500 mm~2.380 mm)時,加入微塑膠0.5克、水50 mL、0.5克Fe3O4¬和不等量正己烷時,會有不同回收效果,但普遍以不加入正己烷,微塑膠(PP、HDPE、LDPE和PS)回收效果最佳,皆約85%以上。 推測此清除機制為微塑膠可吸附有機溶劑,有機溶劑可吸附Fe3O4,三者混合後即可用磁鐵以磁力將此混合物和水樣分離,達到清除微塑膠的效果。但當為塑膠顆粒較大、重量較大時,則會停留在有機層中,反而難以用磁鐵分開,故以Fe3O4即可達到回收微塑膠的效果。