全國中小學科展

2022年

BIOINFORMATIC PREDICTION OF CORONAVIRUS (SARS-COV-2) MUTATIONS THAT INCREASE CONTAGIOUSNESS

Inhibitory effects of the secondary metabolite of actinomycete were examined on cell cycle of the yeasts of S. pombe and S. cerevisiae. The secondary metabolite was obtained from cultivation of the actinomycete isolated from the soil of Owakudani in Hakone, Japan. The fifth fraction of the secondary metabolite by ODS column separation (HK-T5), which was soluble to pure methanol, was used in the present experiments. The HK-T5 brought about the delay of forming colonies of S. pombe for about 11 days compared to that cultivated without the HK-T5. The delay of the colony formation was longer for the S. pombe cultivated with more amount of the HK-T5. The cultivation with HK-T5 also brought about the extension of the lifespan of the S. pombe for more than 10 weeks in a liquidus medium. The cell life recovered the ordinary manner by removal of the HK-T5, meaning that the activities of the HK-T5 is reversible. These facts confirm the suppression of cell cycle, and the delay of cell growth by the HK-T5. These phenomena were similarly observed for S. cerevisiae. Comparison of the action of HK-T5 with hydroxyurea, which is an anticancer drug inhibiting the cell cycle at S phase, clarified that the inhibitory action of HK-T5 worked at the phase earlier than S phase. The combined effects of HK-T5 on the cell cycle were evaluated with triamcinolone acetonide (TA), or aspirin, the former of which is a drug synchronizing cancer cells in S phase, and the latter keeping human cells in G1/G0 phases. The combined use of HK-T5 with TA synchronized the cells at the phase slightly proceeding from G1 to S phase without toxicity. On the other hand, the combined use with aspirin made the inhibitory effect of HK-T5 inactive. Hence, the HK-T5 is attractive as a drug for the extension of cell lifespan, and anticancer therapy.

The Population Structure of the Orange River mudfish (Labeo capensis) in Allemanskraal Dam and Its potential as a Fishery Species

The aim of this research was to investigate whether the ecology and biology of the Orange River mudfish Labeo capensis were suitable for the species to be used in fisheries. Three fleets of the gill nets were set, parallel to the shore. One fleet was lifted, and the fish were collected by hand. The two remaining fleets were lifted the next day. The seine net was pulled for 10 metres within the littoral zone. The net was then pulled towards the shore of the dam and the procedure was repeated four times. The four fyke nets were set parallel to the shore and were left for two nettings nights and then lifted. All fish caught were collected by hand and placed into buckets. The majority (82.93%) of the fish caught were within the 0-100 mm size class. The 101-200mm and 201-300mm size classes contain similar numbers of fish, while no fish were caught in the 301-400mm size class. The hypothesis was accepted. Allemanskraal Dam, as of the study period, has a very small juvenile fish population of L. capensis, as only 7 out of 41 fish individuals caught were within the 101- 300mm fork length size class. These results show that the population of L. capensis is not established as of yet, as the research did was right after their breeding season. Historical research has shown that sexually mature individuals of the L. capensis species tend to be a minimum of 300mm SL, 4-6 years after hatching. The population was largely young-of-the-year and may develop into an established population in 3-4 years (after sexual maturity). The L. capensis population in Allemanskraal Dam has the potential to be a fishery species if suitable conditions are maintained. Establishing this species’ potential will therefore allow economically viable fisheries to utilise them sustainably and to their full economic potential.

以類器官為轉譯研究模式探究乳癌標靶藥引發腸道副作用之機制與對應策略

本研究以腸道類器官(organoid)模擬體內環境,分析乳癌標靶藥物Lapatinib與Tucatinib對腸道產生副作用的差異。Lapatinib明顯抑制ileum及colon organoid的形成,其IC50低於Tucatinib約1000倍。其中Lapatinib特別對adult type organoid較具明顯抑制作用,顯示影響腸道上皮細胞的分化功能。以RNA seq 與Ingenuity pathway Analysis分析藥物對organoid中轉錄體表現的影響,Lapatinib 在colon organoid中增加腸道發炎、葡萄糖代謝異常、氯離子外流等基因群的表現,並降低crypt發展的基因群。其中,Lapatinib藉由增加Glut3的表現提高organoid對葡萄糖的吸收,此作用受到L-ascorbic acid (Vitamin C)抑制,亦增加GABA receptor 提高氯離子外流,顯示代謝與電解質失衡及發炎作用可能為lapatinib造成腹瀉的主因之一。以3D organoid為可信賴的轉譯研究模式,我們發現同屬HER2 tyrosine kinase inhibitor的Lapatinib與Tucatinib對腸道功能產生迥然不同的影響,並發現合併使用Glut3 inhibitor或GABA receptor antagonist可能可成為減緩Lapatinib副作用的對應策略。

Development of an autonomous Search and Rescue Drone

The number of natural disasters has risen significantly in recent years, and with climate change there is no end in sight. Consequently, the demands on rescue forces around the world are increasing. For this reason, I asked myself what I can do to improve the work of rescue teams. Advances in artificial intelligence and drone technology enable new possibilities for problem solving. Based on the technological advances mentioned above, an autonomous Search and Rescue drone was developed as part of this project. The system assists rescue workers in searching for survivors of natural disasters or missing people. This paper also suggests a method for prioritizing survivors based on their vitality. The system was implemented using a commercial Parrot ANAFI drone and Python. The software was tested on a simulated drone. To simplify the development, the whole system was divided into the following subsystems: Navigation System, Search System and Mission Abort System. These subsystems were tested independently. The testing of solutions and new concepts were performed using smaller test programs on the simulated drone and finally on the physical drone. The Search and Rescue system was successfully developed. The person detection system can detect humans and distinguish them from the environment. Furthermore, based on the movements of a person, the system can distinguish whether the person is a rescuer or a victim. In addition, an area to be flown over can be defined. If something goes wrong during the mission, the mission can be aborted by the Mission Abort System. In the simulation, the predefined area can successfully be flown over. Unfortunately, controlling the physical drone does not work. It stops in the air after takeoff due to the firmware of the drone. It does not change the flight state of the drone, which results in all subsequent commands from the system being ignored. This paper shows that artificial intelligence and drone technologies can be combined to deliver better rescue services. The same system can be applied to other applications.

探討溫度和碳源對Pantoea sp.處理養殖廢水之影響及應用

本研究探討改善冬季養殖廢水中亞硝酸降解不良的問題。潘朵拉菌Pantoea sp.可在冬天生長並降解水體亞硝酸,不同於其他菌其在低溫時生長較好但降解較差,顯示兩者非正相關。進一步得知溫度會影響Pantoea sp.細胞內代謝機制,也發現氨濃度降低時降解能力上升,西方墨點法及酵素活性實驗得知MDH表現量和活性在低溫較高。水體中添加葡萄糖可使冬季亞硝酸降解能力提升6倍,且不影響其生長,與文獻添加碳源會促進益生菌生長不同。比較各式糖類後得知單醣和雙醣皆可提升降解能力,其中單醣較雙醣好,且此做法適用各鹽度環境,而碳源可提升降解能力,推測因其影響細胞內TCA cycle運作。最後實際到戶外採集養殖池水研究,結果顯示成本低的擴培方式可有效降解亞硝酸,對改善台灣冬季養殖廢水水質有高度應用價值。

無毒有「單」~探討單寧酸作為生物農藥的可行性

農藥,除了對害蟲的有效抑制之外,也對環境生態造成一定程度的影響,是否有對農作物及環境更為友善的農藥呢?本篇探討「單寧酸」做為生物農藥的可行性,結果發現偽菜蚜體表蠟粉被破壞,單寧酸接觸後具一定程度立即致死能力,生物農藥測試組(乳化劑+油+3%單寧酸溶液)立即致死率69.5% (10min)。生物農藥測試組和噴水組之農作物質量表現,無達到顯著差異( p>0.05),顯示生物農藥試劑對作物生長影響不大;以分光光度計分析,作物與環境土壤均無殘留,且作物易洗淨。生物農藥試劑對於不同科害蟲,以葉蟎致死率最高,為86.3%,而對蚜蟲及介殼蟲則分別為71.3%與61.6%。野外測試發現生物農藥試劑之驅蟲率,D1已達96.1%,而D2則達98%,D3達100%。吸食試驗顯示,生物農藥測試劑組對蚜蟲致死率約90%,顯示本生物農藥試劑不僅具立即接觸毒殺,也兼具長效吸食毒殺的效果。

利用麵包蟲腸道菌降解聚丙烯並探討其優化策略

塑膠對環境危害甚深,雖已有研究證實部分昆蟲可降解塑膠類的聚苯乙烯(PS),但關於聚丙烯(PP)的生物降解研究很少,也沒有進一步透過腸道菌相分析,鑑定出負責降解的菌種。因此我們希望利用麵包蟲生物降解PP,透過16S rRNA定序分析找出可降解PP的潛力菌種,解決塑膠垃圾對環境造成的傷害。我們的實驗結果顯示,麵包蟲能攝食PP並生長,且加入濕料及利用糞便移植腸道菌相能增加麵包蟲對PP的消耗量,證明麵包蟲能攝食PP與腸道菌相有關。利用次世代基因定序分析腸道菌相,麵包蟲攝食PP後腸道菌相有極為顯著的變化,其中腸道菌Pseudomonas stutzeri顯著增多,經實驗證實此菌可降解PP,且在37oC、中性環境的降解效果較佳,一星期約降解3.4 %的PP。我們所使用的方法可快速篩選出能降解PP的菌種。

活化石海百合Comanthus parvicirrus所含化學物質探討

本研究針對臺灣恆春半島海域所採集的棘皮動物海百合小卷海齒花Comanthus parvicirrus進行天然物化合物之成分研究,分離獲得三個角型萘並吡喃酮類型天然化合物,包括一個新化合物8-hydroxy-5,6,9,10-tetramethoxy-2-methyl-4H-benzo[h]chromen-4-one (1)以及兩個已知化合物comaparvin (2)與6-methoxycomaparvin-5-methyl ether (3)。上述化合物結構是由核磁共振儀、紅外線光譜儀、紫外光可見光譜儀、x-ray光譜儀和質譜儀等數據,以及比對相關化合物的文獻來分析確認。 化合物1-3進行體外抗發炎活性測試,並且探討化合物對脂多糖 (lipopolysaccharide, LPS) 誘發的小鼠巨噬細胞 (RAW264.7) 所產生的發炎性蛋白質一氧化氮合成酶 (iNOS) 以及第二型環氧化酶 (COX-2)。

研究以微生物分解廢食用油降低其對環境汙染

本研究從餐廳截油槽中採菌,並以含Tween80及Ca2+培養基篩選出具lipase的五種菌。進一步在大豆沙拉油與豬油中培養,發現一號菌及二號菌有較佳的分解能力,二號菌最佳,且二號菌在分解沙拉油(6.0%)的能力大於豬油(4.9%)。將此兩種菌進行深入探討,發現二號菌在處理截油槽中的廢油效能上優於一號菌,且當一、二號菌混合時更佳;於不同油脂Nutrient Broth 培養基的生長情況,二號菌表現比一號菌好。經定序後比對序列後,推斷一號菌接近Serratia marcescens,二號菌較接近Serratia grimesii。總結一、二號菌是具備油脂分解潛力的菌種。 未來規劃,將菌加入自行設計的油脂分解截油槽,比較計算其分解能力,運用於含油脂的廢水處理,減少環境汙染。

How do antihypertensive agents decrease the high mortality rate of sepsis and septic shock? (探討抗高血壓藥物如何降低敗血症的致死率)

過去已知敗血症患者使用β受體阻滯劑能有效改善心律、酸鹼參數、降低死亡率,在嚴重敗血症和敗血性休克的急性期,持續使用β受體阻滯劑可降低90天內的死亡率。然而,其中的分子機轉仍不明。我們先前利用健保資料庫進行大數據分析並以動物實驗驗證,發現β受體阻滯劑中的atenolol能顯著減少敗血症的致死率。此研究中,我們以LPS (脂多糖) 作為敗血症誘導劑,並利用西方墨點法及逆轉錄聚合酶鏈式反應等生物技術,來探討其中可能的保護機轉,結果發現atenolol可減緩肺部上皮細胞的EMT (上皮間質轉換)及先天免疫巨噬細胞的過度活化。因此,atenolol似乎能減緩LPS造成肺部的傷害,未來有望應用至臨床,以克服敗血症所造成的高死亡率。