全國中小學科展

2019年

Improving Communication for the Visually Impaired Through an Innovative Arabic Writing System

Visual impairment is a major global health problem. In 2017, WHO estimated that there were 253 million people worldwide with this ailment. According to the journal of the American Medical association, the prevalence of visual impairment in the Saudi population is 9.3%. Learning Braille by families of students with visual impairments remains a major obstacle, which precipitates several communication issues. Moreover, difficulties for the students themselves lie in learning braille with languages that include diacritical marks; consequently, affecting their academic progress. My main objective of this project is to help improving life quality of these individuals, and the focus is to advance their social productivity and adaptation. This was accomplished through creating a new simpler Arabic writing system using geometrical shapes. As a part of this project, fifteen participants with visual impairments were interviewed and tried this new writing system; two of them are adults between 25 and 40 years old while the rest are students from 9 to 17 years old. Additionally, 100 participants with visual impairments completed a survey. The data showed that students learned this system in two hours in comparison with students that mastered braille in a few months. This shows that this system is easier to learn and subsequently saves time and effort. The most important value added to this project is that diacritical marks were combined with the alphabet, thereby considerably reducing book sizes compared to Braille-written books. This project presents a novel system that helps people with visual impairments to increase their confidence and independence.

新穎「螢光素酶—螢光奈米鑽石」細胞化驗機制標記於人類間葉幹細胞之藥物篩選應用與研究

本實驗提出了一個新的細胞化驗平台:結合螢光素酶和螢光奈米鑽石(Luciferase-Fluorescent Nanodiamond;Luc-FND)用來高靈敏檢測極少數量的細胞,克服人體間葉幹細胞(Mesenchymal Stem Cell; MSC)的數量稀少以及來源取得困難的問題。本實驗開發的Luc-FND assay,不同於以往的Luciferase assay,Luc-FND assay利用了FND當奈米載體(約為100nm),將裹上的螢光素酶送入細胞後監測細胞內冷光強度,用以得知細胞胞吞作用的多寡,進一步推算出細胞的存活率。本實驗將此機制應用於被不同濃度的化療用藥阿黴素(Doxorubicin;Dox)處理過的間葉幹細胞。結果顯示Luc-FND assay能夠高靈敏的檢測Dox對於間葉幹細胞的毒性,僅用1 ×103個細胞就能測出低至0.3125M的Dox劑量。本研究結果顯示,Luc-FND複合物是一種高效能的生醫工具,可將生物發光蛋白均質傳遞到間葉幹細胞中,提供了一種檢測和驗證治療成果的新方法。

Effect of Air Resonance by Wind Speed Difference on Falling fruit

This study completes an air vibration equation expressed wind speed slope and wind speed. First, preliminary experiments identified air vibrations when wind speed differences occurred over distance. Several air fans were connected in series and the rotational speed of the air fan was adjusted to vary the wind speed with distance. At this time, only certain pendulum oscillates during a particular wind speed slope. It was expected that the pendulum would shake because the frequency of the air due to the slope of the wind speed was equal to the natural frequency of the pendulum. In addition, relatively short pendulum swings in large wind speed slope, long pendulum swings in short wind speed slope. After calculating the natural frequency of the seasonal growth of fruit using the physical factors model, we experiment how resonant frequency was related with cone length, angular width, wind speed, velocity and secondary derivative. the actual experiment analyzed the natural frequency of the fruit and resonance from the air vibration as the linear function of the wind speed, velocity, and secondary derivative. The experiment determined that the pendulum of a specified number of frequencies resonated with a particular wind speed pattern. It is judged that the vibration of air is related to first derivative of wind speed depending on speed and distance. However, it is very difficult to express the flow of nonlinear fluids as a function of simple function, particularly the effects of air vibrations caused by wind speed second derivative, which appeared to be associated with forces. This is a task that needs to be solved through further research.

直接觀測表面修飾之氧化石墨烯對改善抗血栓性能之研究

臨床上,人工血管與心血管支架常因血栓導致其使用壽命減短,甚至造成病人生命危險,而血栓起因乃為血小板活化。氧化石墨烯為新穎二維材料,其於醫學方面的應用也極具潛力。本研究藉由微流道觀測系統,透過光學顯微鏡直接觀測氧化石墨烯表面與血小板間之交互作用,再進一步使用紫外光還原氧化石墨烯表面,並使用原子力顯微鏡(AFM)、X光光電子能譜儀(XPS)、凱爾文探測力顯微鏡(Kelvin Probe)等檢測氧化石墨烯表面性質。 經實驗證實,鍍有氧化石墨烯之表面在流動狀態下,可有效地減少血小板的活化與貼附,並推測因氧化石墨烯表面帶有負電荷,可排斥同帶負電荷之血小板,以達到減少血栓生成的目的,未來可進一步應用在人工心血管支架上,延長其使用壽命。此研究突顯了改善人工血管與支架表面性質與其臨床上應用的重要性,而材料表面修飾也為優化臨床應用提供一個可行方法。

眼位變變變-蝌蚪變態前後眼睛型態轉變之研究

兩棲類是一群可以在水域及陸域棲息生活的動物,幼體期蝌蚪生活在水中,具尾巴可四處游動,多數為濾食或刮食,但變態後的成體青蛙主要生活在陸地,吐出長舌捕食會動的生物。因此蝌蚪變態前後不僅生存環境大為改變,攝食行為也從被動取食轉為主動攻擊,所以推測牠們在變態過程中,眼睛位置會有所變化,形成更大的雙眼(立體)視覺區,適應變態前後的劇烈改變。本研究運用向量幾何作圖方式,將頭部眼睛位置座標數值化後,分析不同蝌蚪變態前後眼睛位置與雙眼視覺的變化情形,試著找出變化趨勢與棲地、行為或演化之間的關聯性。結果發現不同眼睛類型的蝌蚪在變態過程中,眼睛位置會有不同的轉變過程,但變態之後,眼睛皆會往頭部兩側移動,眼睛至吻端的距離變短,導致雙眼視覺區變大,更具立體視覺,可精準判斷獵物位置。此外也發現蝌蚪視野範圍主要受水層高低影響,高水層蝌蚪眼睛位於頭兩側,低水層蝌蚪眼睛則生長在背部。成蛙視野範圍影響因素有棲地、行為及親緣關係,棲地分析結果顯示會在水陸兩邊活動的成蛙視野範圍最大。水棲型的福建大頭蛙具有強領域行為,陸棲性黑眶蟾蜍具瞄準捕食行為,故雙眼視覺都較大。同屬於樹蛙科的蛙類雙眼視覺大小的影響因素主要與為活動高度有關,樹棲型樹蛙因需在樹林活動,演化出較大的雙眼視覺,以利判斷空間位置。艾氏、王氏與碧眼樹蛙等親緣關係接近的姊妹種因生殖行為類似,蝌蚪與成蛙都演化出具有相似的眼睛型態。

利用深度學習預測中草藥的藥性功能與毒性

近年來中醫在慢性病的治療上已獲得很大的進展,許多中草藥的功能與特性皆是利用人體實驗來找出其效用,中藥內含的成分極為複雜,其功能與毒性測試常依賴於過去經驗醫學,許多中藥仍有待探討與實證,其對人體細胞和基因的影響仍不如西醫。因此目前國內外紛紛開始建置中草藥、成分、化合物相關數據庫供查詢,然而如何讓中醫的功能與毒性科學化變得是很重要的議題。本研究利用化學結構的數據分析來探討中藥成分與人體臟器與毒性的關係性。我們採用深度學習模型以中草藥的化學性質作為輸入,透過化學結構的圖像傳播,來預測中草藥相對應之臟器有效功能與毒性預測,希望透過本研究可以提供中藥對健康影響的依據並作為未來輔助中醫的工具,讓人們可更加了解食用中藥對人體可能有的正面與負面影響。

自轉易導致presupernova階段 ? 探討恆星自轉於演化過程及最終狀態扮演之角色

自轉是塑造恆星演化的關鍵物理因素(A. Maeder et al. 2012),然而,在一些研究當中,模擬恆星演化仍會選擇忽略旋轉的影響(Pietrinferni et al. 2004),這開啟了我探討自轉在恆星演化扮演的角色之興趣,於是展開以下研究。MESA(Modules for Experiments in Stellar Astrophysics)為一專業天文物理界中普遍使用之電腦程式,能模擬各種恆星演化場景,本研究藉由MESA模擬不自轉至具自轉程度差異之恆星演化模型,探討其演化過程之變化及最終狀態之差異。研究結果分析發現自轉混合導致不同殼層位置之元素有更好的對流性,因而產生較好之化學同質性質 (Chemical Homogeneous),而自轉效應在驅使恆星進入presupernova階段亦有一定程度的重要性。

FAT10 Haplotypes as a Potential Biomarker for Cancer

Cancer is the second leading cause of death today[1], accounting for nearly 1 in 6 deaths worldwide. Despite this, diagnosis and treatment models for cancer are limited and as such, new methods to identify and treat susceptible patients are required urgently. HLAF- adjacent transcript 10 (FAT10) is an oncogene that is strongly implicated in the development of inflammation-associated cancers[2]. Previous research on this highly polymorphic gene has identified 2 haplotypes – the reference haplotype, which is found in both cancer patients and healthy individuals, as well as an additional haplotype that is occurs at higher frequency in cancer patients and is associated with higher odds of cancer. In this study, it was hypothesised that the cancer-associated FAT10 haplotype can better promote tumorigenicity and could thereby serve as a useful biomarker for cancer. Here, we functionally characterize the 2 FAT10 haplotypes to understand how they influence some of the hallmarks of cancer. The cancer-exclusive haplotype was observed to enhance hallmarks of cancer, namely uncontrolled cell growth, resisting cell death and anchorage-independent growth as compared to the reference haplotype. Moreover, we uncovered the differential gene expression patterns induced by each haplotype. Molecules involved in cell adhesion and proliferation, as well as transcription were upregulated by the cancer-associated haplotype and hence could have contributed to the increased tumourigenic potential of the cancer haplotype.

"turn" -on (free food and renewable energy )

Nowadays Electric energy is the most useful in the world because we use it every day for lightening, work, entertainment ext … but electric energy also can be expensive and it will pollute the air plus we all know that the air pollution is getting worse. Our world consumes a huge amount of electric energy . Also we know that the homelessness is getting higher all around the globe and it reached a high percentage. The high price and the sudden cut of the electric energy and with it the air pollution makes a big problem. That’s why we created this project named TURN ON which is a friend of the environment and a friend of the humans. Our product will help us to produce and create strong, clean and renewable energy plus it will help the homeless to have free food and free transport tickets. After doing a lot of researches we found that our new method of producing energy gives a great electric energy and limit pollution. The kinetic energy is produced using rotations. That’s why we used the rotations of motorbikes, bicycles, cars wheels and turn that mechanical energy (wm) into electrical energy (we) that we can easily use in our daily life plus we can help homeless by giving them food widgets… in exchange with the electrical energy that they produced while using bicycles…After performing several tests and taking notes, we are able to conclude that our apparatus is indeed efficient as it is able to convert the rotation into electronic energy that we can store and use in emergencies to solve this big problem and in the same time to limit air pollution with using bicycles and reducing hunger regarding homeless. This machine should be easy to implement, cheap, does not depend on any other parameters such as the wind. Any rotation in any place can be a source of Electrical Energy. To facilitate the use of this new device, A START UP will be launched to rent electric bikes for “free”, distribute free food, snacks, tickets to homeless regarding to the energy production.

Multiple Time-step Predictive Models for Hurricanes in the North Atlantic Basin Based on Machine Learning Algorithms

The cost of damage caused by hurricanes in 2017 is estimated to be over 200 billion dollars. Quick and accurate prediction of the path of a hurricane and its strength would be very valuable in alleviating these losses. Machine learning based prediction models, in contrast to models based on physics, have been developed successfully in many problem domains. A machine learning system infers the modeling function from a training dataset. This project developed machine learning based prediction models to forecast the path and strength of hurricanes in the North Atlantic basin. Feature analysis was performed on the HURDAT2 dataset, which contains paths and strengths of past hurricanes. Artificial Neural Networks (ANNs) and Generalized Linear Model (GLM) approaches such as Tikhonov regularization were investigated to develop nine hurricane prediction models. Prediction accuracy of these models was compared using a testing dataset, disjoint from the training dataset. The coefficient of determination and the mean squared error were used as performance metrics. Post-processing metrics, such as geodesic error in path prediction and the mean wind speed error, were also used to compare different models. TLS linear regression model performed the best of out the nine models for one and two time steps, while the ANNs made more accurate predictions for longer periods. All models predicted location and strength with greater than .95 coefficient of determination for up to two days. My models predicted hurricane path in under a second with accuracy comparable to that of current models.