全國中小學科展

2019年

銅修飾二硫化錫應用於光催化二氧化碳還原產生太陽能燃料

本文研究轉換二氧化碳成為替代能源,介紹運用太陽能源,以SnS2及光觸媒進行CO2還原反應,以產生碳氫和碳氫氧化合物。我們以溶劑熱法配置SnS2,過程中藉由加入不同重量百分比例的銅(0, 0.5, 1, 5, 10 wt.%)探討銅的添加對於觸媒的影響:能隙縮短、底面為從六角形至四邊形晶體結構、吸收光範圍延伸至可見光之域。以活性測試探討其綜合性能,結果呈現1 wt.%銅修飾的SnS2光觸媒有最高CO2轉換效率,且產物單一為乙醛。未來希望藉由研究最佳銅修飾的比例,以改良二硫化錫光觸媒的吸光特性、減少電子電洞對復合,並進一步增加其量子轉換效率、增加產量。

An Innovative Design of Enhanced-Performance Solar Panel Using Heat Pipe and Thermoelectric Generator

Solar energy is a main source of energy that is expected to play a vital role in fulfilling the future global demand of electricity. Design of advanced photovoltaic (PV) system with high electric conversion efficiency is the key for collecting solar energy. A major obstacle hindering useful PV utilization is the deterioration of solar cell efficiency with temperature. The present results of experimentation have shown that there occurs a reduction of approximately 33% in the solar panel efficiency as the operating temperature increases from 45 °C to 68 °C at 1000 W/m2. Therefore, an innovative design of enhanced-performance solar panel using micro flat heat pipe (HP) and thermoelectric generator (TEG) is proposed and experimentally investigated in the presented project. To operate HP and TEG at highest possible efficiency, the condensation section of HP is innovatively cooled by utilize the condensed water inside the evaporator of air conditioner (which is usually between 5-7 °C). Two different types of silicon panel are used in the study: monocrystalline solar panel and polycrystalline solar panel. The results showed that a reduction in average solar panel temperature up to 25% is obtained. In addition, produced power was increased by as much as 50% when solar panel was cooled by the heat pipe. Finally, the feasibility study and cost analysis of the proposed hybrid system are discussed in details and presented.

新穎「螢光素酶—螢光奈米鑽石」細胞化驗機制標記於人類間葉幹細胞之藥物篩選應用與研究

本實驗提出了一個新的細胞化驗平台:結合螢光素酶和螢光奈米鑽石(Luciferase-Fluorescent Nanodiamond;Luc-FND)用來高靈敏檢測極少數量的細胞,克服人體間葉幹細胞(Mesenchymal Stem Cell; MSC)的數量稀少以及來源取得困難的問題。本實驗開發的Luc-FND assay,不同於以往的Luciferase assay,Luc-FND assay利用了FND當奈米載體(約為100nm),將裹上的螢光素酶送入細胞後監測細胞內冷光強度,用以得知細胞胞吞作用的多寡,進一步推算出細胞的存活率。本實驗將此機制應用於被不同濃度的化療用藥阿黴素(Doxorubicin;Dox)處理過的間葉幹細胞。結果顯示Luc-FND assay能夠高靈敏的檢測Dox對於間葉幹細胞的毒性,僅用1 ×103個細胞就能測出低至0.3125M的Dox劑量。本研究結果顯示,Luc-FND複合物是一種高效能的生醫工具,可將生物發光蛋白均質傳遞到間葉幹細胞中,提供了一種檢測和驗證治療成果的新方法。

Improving Spinal Fusions: Redesigning the Pedicle Probe to Prevent Vertebral Breaches

Pedicle probes are medical devices used by surgeons during spinal fusions for patients with conditions such as scoliosis and spinal fractures. The probe creates pilot holes to guide the placement of pedicle screws in vertebrae. The screws are then connected with a metal rod to stabilize the spine. Twenty-nine percent of patients who undergo spinal fusions suffer from vertebral breaches – accidental damage to the spinal cord – which cause complications such as infection, motor defects, and in many cases paralysis. My goal was to make spinal fusions safer by redesigning the pedicle probe to provide surgeons with instantaneous feedback on the probe’s location, enabling them to more accurately place pedicle screws. The pedicle probe I developed takes advantage of the difference in density between the inner cancellous (spongy) bone and the outer cortical (compact) bone found in vertebrae. Cortical bone is avoided by monitoring the cannulation force – the force required to insert the probe. When the probe contacts denser cortical tissue, it warns the user by providing tactile and visual feedback through a vibration motor and an LED. This enables the surgeon to redirect the probe and advance down the optimum path, preventing a possible breach. It proved successful in preventing breaches on lamb vertebrae, which closely resemble human vertebrae. This novel device improves feedback to the surgeon and eliminates the need for costly and potentially harmful ionizing radiation exposure. Furthermore, it does not depend on, or require, any preoperative imaging. The cost of manufacturing the improved probe is less than $42 USD (NT$1297). Results of patent searches for 加拿大, the 美國, and Europe suggest that the redesigned probe is unique in predicting and preventing breaches in spinal fusions based on predetermined force threshold values. The probe is also unique in enabling personalized procedures in spinal fusions for those with complications, through calibrating a control (force) limit based on tissue samples prior to the procedure. Enhancing a surgeon’s ability to determine an appropriate path for pedicle screws through a sensor-enabled probe has the potential to significantly reduce the incidence of vertebral breaches during spinal fusion surgery.

BA-ADA based ROS-responsive nanoparticles for selective drug delivery in cancer cells

Current medical intervention in cancer therapeutic methods has shown risks and side effects with normal tissues. This includes incomplete cancer eradication. In reference to numerous studies and literature reviews, a stimuli-responsive drug delivery system is selected as an innovative, safe and more assured treatment due to its site-specific release ability. This allows specific intervention upon the given stimulus which response to the presenting disease symptoms. Hence, we designed a ROS(Reactive Oxygen Species)-responsive BA-ADA(4-Hydroxyphenylboronic acid pinacol ester and 1-Adamantanecarboxylic acid bonded molecule) nanoparticle delivery system. In our study, ROS-responsive nanoparticle was designed and prepared based on a synthetic molecule from BA and ADA. A therapeutic payload, Doxorubicin, can be loaded into the nanoparticles and it can be selectively released within cancerous tissues whereby ROS level is over-expressed. This will enhance both therapeutic efficiency and reduce side effects. The stability and ROS-responsiveness of the particle were proven in a series of evidence-based experiments. The results showed a significant difference in cell viability during the experiments with healthy and cancerous cell samples. Further research will be required to extend the experiment in vivo.

一步合成碳奈米複合材料與奈米碳管應用於超級電容電極修飾

本研究以高溫鍛燒的褐藻酸鈉鹽與亞硫酸銨混合粉末作為電極修飾材料,並與多層奈米碳管(CNT)混合後,附著於碳紙極電板上。修飾材料中推測含有碳奈米纖維與碳量子點,其表面具親水性的含氧官能基,可提高CNT在水相中的分散性;而碳奈米纖維則推測可增加材料的機械強度,提升電極可撓度。研究藉由調整鍛燒溫度和氮材合成比例,探討不同變因下製造的電極修飾材料對電容效能的影響。 得知最佳鍛燒條件為:褐藻酸鈉鹽與亞硫酸銨1:1(重量比)、鍛燒溫度為160℃。利用此條件下製作出來的電極修飾材料,可以使實驗材料達到最高的比電容值324F/g。此製程大幅提升了奈米碳管的比電容值(對照組128F/g),期待未來能實際運用於電能儲存裝置上,或搭配電池應用於可撓式電子裝置。

直接觀測表面修飾之氧化石墨烯對改善抗血栓性能之研究

臨床上,人工血管與心血管支架常因血栓導致其使用壽命減短,甚至造成病人生命危險,而血栓起因乃為血小板活化。氧化石墨烯為新穎二維材料,其於醫學方面的應用也極具潛力。本研究藉由微流道觀測系統,透過光學顯微鏡直接觀測氧化石墨烯表面與血小板間之交互作用,再進一步使用紫外光還原氧化石墨烯表面,並使用原子力顯微鏡(AFM)、X光光電子能譜儀(XPS)、凱爾文探測力顯微鏡(Kelvin Probe)等檢測氧化石墨烯表面性質。 經實驗證實,鍍有氧化石墨烯之表面在流動狀態下,可有效地減少血小板的活化與貼附,並推測因氧化石墨烯表面帶有負電荷,可排斥同帶負電荷之血小板,以達到減少血栓生成的目的,未來可進一步應用在人工心血管支架上,延長其使用壽命。此研究突顯了改善人工血管與支架表面性質與其臨床上應用的重要性,而材料表面修飾也為優化臨床應用提供一個可行方法。

Convert pixel image into paths saves in XYZ format to use in CNC machines using innovative algorithms.

CNC machines use vector graphics or vector image programs that take time and effort on hobbyists. Therefore, it is important to provide accurate techniques for converting ordinary images available on the Internet or can be designed with easy programs. In order to have precise drill paths read by CNC machines directly and produce a product that does not contain rattles at the edges. This depends on the accuracy of processing the extracted paths. The development of algorithms has been completed Transforms Pixel image into Paths with XYZ extension, which is used to drill material and cut it through CNC machines. And the algorithms are based on transfer images with low quality. And Its Advantage that it can create high Paths with as few points as possible. The program can convert the pixel image into paths, and then converted into g-code, and use it in CNC machines directly.

The Study of the Relationship between Global Warming and Acid Rain

The purpose of this project are 1)To study the relationship between global warming and acid rain with chemical model and mathematics model from temperature changing and pH of carbonic acid. 2) To create a pH measurement tool of carbonic acid in gaseous state.3) To study the impact of human activities in Loei province that affect to the relationship between global warming and acid rain. The procedures are 1)Do an experiment for studying the relationship between temperature changing and pH of carbonic acid. 2) Proof the mathematics model by using the result of experiment, the chemical reaction equation of carbonic acid solution. 3)Create a pH measurement tool of Carbonic acid by using Arduino and sensor with new formula in the computer program. 4) Using a pH measurement tool of Carbonic acid for studying impact of human activities in Loei province including industrial area, agricultural area, tourism area and forest area. The result of the mathematical model of the relationship between temperature changing and pH of carbonic acid is in form of Cubic equation in Equilibrium state and STP state. (Standard condition for Temperature and Pressure) So, we found that in this state has pH of carbonic acid is about 5.644. When the temperature rises up the effect of rainfall has a lower pH of carbonic acid solution. We also proof the new formula that create a pH measurement tool of Carbonic acid in gaseous state. The impact of human activities in Loei province found that the areas most affected by acid rain are the industrial areas, agricultural areas, tourism areas and forest areas respectively. In conclusion, when the temperature rises, it will dissolve acid solutions in the water on the earth. The loss of [H+] made the pH increases and the greenhouse gases become more atmospheric. These gases are more likely to react with atmospheric vapor. When these vapor form a cloud and condensation falls as rain, the rainfall has a lower pH, that is, global warming can result in the phenomenon of acid rain is greater.

Findings of new oscillations in BR reaction

The Briggs Rauscher reaction, i. e., BR reaction, which is one of the oscillation reactions, produces iodide ion and iodine repeatedly. Continual color changes of the solution from colorless to deep blue, and vice versa, are observed during the reaction due to the so-called “iodine test” reaction. In this work, we studied the effects of the presence of the redox active indicators on the oscillation behavior of the BR reaction. To the reaction mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch, which are used for the general BR reaction as added a redox active reagent (indicator). Then, the changes in color and voltage of the reaction solution were recorded by a photosensor of the LEGO MINDSTORMS and a voltmeter using Pt electrodes. Under general reaction conditions, the oscillation reaction continued for ca. 5 minutes, including 18 times of oscillations. When an indicator, such as BTB, was added instead of starch to the reaction solution, splits of the voltage wave were observed, which should be a kind of new oscillation. Moreover, we found that the addition of K3[Fe(CN)6], which exhibits high redox activity, in the reaction solution instead of starch made the life-time and the numbers of the oscillation in the reaction greater by 3 times (14 min.) in time and more than 4 times (81 times) in the frequency. It’s also a kind of new oscillation. These results suggested that the oxidation-reduction reactions by the addition of ferricyanate ion effectively promotes the redox process of iodine and iodide ion. The experiments we wrote above were conducted without starch. Thus, as a reference, we conducted the same experiments under the presence of starch and got interesting results. We also studied the effects of K4[Fe(CN)6], suggeting that not only redox reaction between ferricyanide and ferrocyanide ion, but also the redox reaction with BR solution should occur in these reactions.