全國中小學科展

2019年

BA-ADA based ROS-responsive nanoparticles for selective drug delivery in cancer cells

Current medical intervention in cancer therapeutic methods has shown risks and side effects with normal tissues. This includes incomplete cancer eradication. In reference to numerous studies and literature reviews, a stimuli-responsive drug delivery system is selected as an innovative, safe and more assured treatment due to its site-specific release ability. This allows specific intervention upon the given stimulus which response to the presenting disease symptoms. Hence, we designed a ROS(Reactive Oxygen Species)-responsive BA-ADA(4-Hydroxyphenylboronic acid pinacol ester and 1-Adamantanecarboxylic acid bonded molecule) nanoparticle delivery system. In our study, ROS-responsive nanoparticle was designed and prepared based on a synthetic molecule from BA and ADA. A therapeutic payload, Doxorubicin, can be loaded into the nanoparticles and it can be selectively released within cancerous tissues whereby ROS level is over-expressed. This will enhance both therapeutic efficiency and reduce side effects. The stability and ROS-responsiveness of the particle were proven in a series of evidence-based experiments. The results showed a significant difference in cell viability during the experiments with healthy and cancerous cell samples. Further research will be required to extend the experiment in vivo.

Findings of new oscillations in BR reaction

The Briggs Rauscher reaction, i. e., BR reaction, which is one of the oscillation reactions, produces iodide ion and iodine repeatedly. Continual color changes of the solution from colorless to deep blue, and vice versa, are observed during the reaction due to the so-called “iodine test” reaction. In this work, we studied the effects of the presence of the redox active indicators on the oscillation behavior of the BR reaction. To the reaction mixture of KIO3, H2SO4, H2O2, C3H4O4, MnSO4, and starch, which are used for the general BR reaction as added a redox active reagent (indicator). Then, the changes in color and voltage of the reaction solution were recorded by a photosensor of the LEGO MINDSTORMS and a voltmeter using Pt electrodes. Under general reaction conditions, the oscillation reaction continued for ca. 5 minutes, including 18 times of oscillations. When an indicator, such as BTB, was added instead of starch to the reaction solution, splits of the voltage wave were observed, which should be a kind of new oscillation. Moreover, we found that the addition of K3[Fe(CN)6], which exhibits high redox activity, in the reaction solution instead of starch made the life-time and the numbers of the oscillation in the reaction greater by 3 times (14 min.) in time and more than 4 times (81 times) in the frequency. It’s also a kind of new oscillation. These results suggested that the oxidation-reduction reactions by the addition of ferricyanate ion effectively promotes the redox process of iodine and iodide ion. The experiments we wrote above were conducted without starch. Thus, as a reference, we conducted the same experiments under the presence of starch and got interesting results. We also studied the effects of K4[Fe(CN)6], suggeting that not only redox reaction between ferricyanide and ferrocyanide ion, but also the redox reaction with BR solution should occur in these reactions.

Beautiful Butterfly: The Physics Behind The Colors

Even as a child, I was fascinated by the colors in nature, such as rainbows, butterflies and flowers. This fascination developed into curiosity with age, and as my school studies developed, I became particularly interested in the scientific aspects of the origin and development of colors. I wanted to answer the question: How are the different colors of the butterfly wings related to the nanostructures of scales and pigments? The color on the butterfly wings results either from the pigmentation (chemical color) or from the structure (physical color) of the wing scales. Colors such as yellow, black, red and brown are mainly created by pigments. The interaction of light and structures in and on the surface of butterfly wings, often the size of the wavelength of the light, results in physical colors. These colors are usually bright and dependent on the viewing angle (unlike chemical pigments that spread light diffusely). The colors produced here are usually golden, green, purple and blue. But, where do these colors come from and why do certain species dazzle more than others? To get to the heart of the matter, I identified two key questions: • How are the different colors of the butterfly wings related to the nanostructures of scales and to the pigments? • Using the nanostructure, can you find out the wavelength of the reflected light? In this work, I focus on the structural colors of butterflies and study the physics behind them. This includes parachuting in areas such as diffraction gratings, scattering of light, interference in thin films, and multilayer interference. In order to experience the greatest possible diversity, I selected butterflies from different species for the measurements. Using the spectrometer, I measured the light reflected from butterflies. High-resolution microscopes such as the laser microscope and the scanning electron microscope gave me the opportunity to study the detailed nanostructures of the wing. In addition, I was able to analyze and evaluate my results using existing physical models and MATLAB simulations (Maxwell equations).

An Innovative Design of Enhanced-Performance Solar Panel Using Heat Pipe and Thermoelectric Generator

Solar energy is a main source of energy that is expected to play a vital role in fulfilling the future global demand of electricity. Design of advanced photovoltaic (PV) system with high electric conversion efficiency is the key for collecting solar energy. A major obstacle hindering useful PV utilization is the deterioration of solar cell efficiency with temperature. The present results of experimentation have shown that there occurs a reduction of approximately 33% in the solar panel efficiency as the operating temperature increases from 45 °C to 68 °C at 1000 W/m2. Therefore, an innovative design of enhanced-performance solar panel using micro flat heat pipe (HP) and thermoelectric generator (TEG) is proposed and experimentally investigated in the presented project. To operate HP and TEG at highest possible efficiency, the condensation section of HP is innovatively cooled by utilize the condensed water inside the evaporator of air conditioner (which is usually between 5-7 °C). Two different types of silicon panel are used in the study: monocrystalline solar panel and polycrystalline solar panel. The results showed that a reduction in average solar panel temperature up to 25% is obtained. In addition, produced power was increased by as much as 50% when solar panel was cooled by the heat pipe. Finally, the feasibility study and cost analysis of the proposed hybrid system are discussed in details and presented.

銅修飾二硫化錫應用於光催化二氧化碳還原產生太陽能燃料

本文研究轉換二氧化碳成為替代能源,介紹運用太陽能源,以SnS2及光觸媒進行CO2還原反應,以產生碳氫和碳氫氧化合物。我們以溶劑熱法配置SnS2,過程中藉由加入不同重量百分比例的銅(0, 0.5, 1, 5, 10 wt.%)探討銅的添加對於觸媒的影響:能隙縮短、底面為從六角形至四邊形晶體結構、吸收光範圍延伸至可見光之域。以活性測試探討其綜合性能,結果呈現1 wt.%銅修飾的SnS2光觸媒有最高CO2轉換效率,且產物單一為乙醛。未來希望藉由研究最佳銅修飾的比例,以改良二硫化錫光觸媒的吸光特性、減少電子電洞對復合,並進一步增加其量子轉換效率、增加產量。

The expansion of ticks in the valley of Poschiavo: a growing threat to the future?

In recent years, the ticks have reached the valley of Poschiavo and so far no study has been done to determine their diffusion. Recently, this presence has become a much discussed topic as these ticks can be carriers of pathogenes and represent a danger to humans. The goal of this work is to analyze the current situation in the valley of Poschiavo to understand in which areas the ticks are widespread, if they are carriers of pathogens and which factors could have an influence on their expansion. Several methods have been used for data collection. Ticks were found on ungulates killed during the high hunt in autumn 2016. In spring 2017, ticks were collected in various areas of the valley using the flag method that involves dragging a cotton cloth onto the ground. Some of the collected ticks were sent to a laboratory to identify the presence of the Borrelia burgdorferi, the pathogen responsible for Lyme borreliosis. To understand the evolution of the presence of ticks in the valley, the doctors and veterinarians were interviewed. Finally, to identify any climate changes related to the diffusion of ticks, the evolution of the tem-perature and relative humidity measured by two meteorological stations in the valley of Poschiavo since 1980 have been analyzed. Thanks to this study it was possible to highlight for the first time the presence in the valley of Poschiavo of ticks wich are bearer of the Borrelia burgdorferi. In fact, the bacterium was present in 26% of the analyzed ticks. Currently, the thicks populate the southern part of the valley, from the lake of Poschiavo to Campocologno, a small area in the central part of the valley and the area around Poschiavo and San Carlo. The interviews carried out showed that in recent years the ticks in the valley have increased and that the climate change could be a possible cause. In fact, since 1980 the temperature measured on the bottom of the valley has increased on average by 1.5 ° C and also the relative humidity has risen slightly. These changes could affect the diffusion of ticks in the valley of Poschiavo. In the future the temperatures will rise further and consequently the climate of the Poschiavo valley will most likely be more suited to the life of the ticks favoring their in-crease.

Convert pixel image into paths saves in XYZ format to use in CNC machines using innovative algorithms.

CNC machines use vector graphics or vector image programs that take time and effort on hobbyists. Therefore, it is important to provide accurate techniques for converting ordinary images available on the Internet or can be designed with easy programs. In order to have precise drill paths read by CNC machines directly and produce a product that does not contain rattles at the edges. This depends on the accuracy of processing the extracted paths. The development of algorithms has been completed Transforms Pixel image into Paths with XYZ extension, which is used to drill material and cut it through CNC machines. And the algorithms are based on transfer images with low quality. And Its Advantage that it can create high Paths with as few points as possible. The program can convert the pixel image into paths, and then converted into g-code, and use it in CNC machines directly.

A Modular Construction 3D Printer

The 3D printer that we created is able to print objects out of concrete and is modular, so it can be assembled the way it is needed.

Improving Spinal Fusions: Redesigning the Pedicle Probe to Prevent Vertebral Breaches

Pedicle probes are medical devices used by surgeons during spinal fusions for patients with conditions such as scoliosis and spinal fractures. The probe creates pilot holes to guide the placement of pedicle screws in vertebrae. The screws are then connected with a metal rod to stabilize the spine. Twenty-nine percent of patients who undergo spinal fusions suffer from vertebral breaches – accidental damage to the spinal cord – which cause complications such as infection, motor defects, and in many cases paralysis. My goal was to make spinal fusions safer by redesigning the pedicle probe to provide surgeons with instantaneous feedback on the probe’s location, enabling them to more accurately place pedicle screws. The pedicle probe I developed takes advantage of the difference in density between the inner cancellous (spongy) bone and the outer cortical (compact) bone found in vertebrae. Cortical bone is avoided by monitoring the cannulation force – the force required to insert the probe. When the probe contacts denser cortical tissue, it warns the user by providing tactile and visual feedback through a vibration motor and an LED. This enables the surgeon to redirect the probe and advance down the optimum path, preventing a possible breach. It proved successful in preventing breaches on lamb vertebrae, which closely resemble human vertebrae. This novel device improves feedback to the surgeon and eliminates the need for costly and potentially harmful ionizing radiation exposure. Furthermore, it does not depend on, or require, any preoperative imaging. The cost of manufacturing the improved probe is less than $42 USD (NT$1297). Results of patent searches for 加拿大, the 美國, and Europe suggest that the redesigned probe is unique in predicting and preventing breaches in spinal fusions based on predetermined force threshold values. The probe is also unique in enabling personalized procedures in spinal fusions for those with complications, through calibrating a control (force) limit based on tissue samples prior to the procedure. Enhancing a surgeon’s ability to determine an appropriate path for pedicle screws through a sensor-enabled probe has the potential to significantly reduce the incidence of vertebral breaches during spinal fusion surgery.

新穎「螢光素酶—螢光奈米鑽石」細胞化驗機制標記於人類間葉幹細胞之藥物篩選應用與研究

本實驗提出了一個新的細胞化驗平台:結合螢光素酶和螢光奈米鑽石(Luciferase-Fluorescent Nanodiamond;Luc-FND)用來高靈敏檢測極少數量的細胞,克服人體間葉幹細胞(Mesenchymal Stem Cell; MSC)的數量稀少以及來源取得困難的問題。本實驗開發的Luc-FND assay,不同於以往的Luciferase assay,Luc-FND assay利用了FND當奈米載體(約為100nm),將裹上的螢光素酶送入細胞後監測細胞內冷光強度,用以得知細胞胞吞作用的多寡,進一步推算出細胞的存活率。本實驗將此機制應用於被不同濃度的化療用藥阿黴素(Doxorubicin;Dox)處理過的間葉幹細胞。結果顯示Luc-FND assay能夠高靈敏的檢測Dox對於間葉幹細胞的毒性,僅用1 ×103個細胞就能測出低至0.3125M的Dox劑量。本研究結果顯示,Luc-FND複合物是一種高效能的生醫工具,可將生物發光蛋白均質傳遞到間葉幹細胞中,提供了一種檢測和驗證治療成果的新方法。