了解抗氧化的「旋」機-利用自製的旋光儀來探討旋光性與抗氧化成分之間的
In this research we derived heating effects on anti-oxidation by optical rotation analyses. A simple and accurate Polarimeter was devised with polar screens, laser, and photo resistor; the laser was used for light source, and the photo resistor for detection. Four kind of fruits, Hyloceeus polyrhizus, California plum, kiwi and tomato were experimented by heating them in boiling water and microwave oven. Their optical rotations versus time duration were calculated. Then we used ABTS/ the H2O2/HRP analysis system from Arnao's research to obtain the heating effects on anti-oxidation by calculating the vitamin C densities versus lag time. We found that there was a tendency of increased anti-oxidation at the beginning by heating, but decreased afterwards. Better oxidation was achieved by using microwave for Hyloceeus polyrhizus, by using boiling water for kiwi and tomato, and by using both methods for California plum. The same tendency was also found in the optical rotation analyses. Therefore we successfully developed a new method to measure the antioxidant activities by the optical rotation. We can also apply this method to simulate the fruit digestion process in the stomach, which let us understand further about anti-oxidation ( or optical rotation ) versus time. 本研究利用偏振片、雷射光為光源、光敏電阻為偵測器,組裝成一個簡易且精確的旋光度計。 我們利用此旋光度計對奇異果、火龍果、聖女蕃茄、加州李子四種水果以微波、水煮及油浴三種方式來處理,求出水果的旋光度與熱處理時間的關係。再藉由Arnao 研究的ABTS/ H2O2/HRP 分析系統,以不同濃度的維生素C與延遲時間畫圖作為標準曲線來測量總抗氧化活性,並比較熱處理後抗氧化活性的變化趨勢。 透過本研究可以了解不同熱處理方式對四種水果之抗氧化活性初期皆有增加的趨勢,但隨著時間增長則抗氧化活性降低。其中奇異果與聖女蕃茄用油浴,火龍果用微波處理,加州李子則是用任何熱處理方式均可得較佳的抗氧化活性,而熱處理後在旋光度測量上也有相同的趨勢。因為此兩種方法有一致的反應趨勢,所以證明我們成功地開發出一種可以利用旋光度來測定抗氧化的新方法。 最後,應用本方法進一步模擬水果在胃部裡的消化,讓我們更可以了解在整個消化的過程中抗氧化活性(旋光度)隨時間變化的情形。
全民攻笛
本實驗主要是研究閉管駐波的發聲原理。何謂「閉管駐波」?就是一個管子在相同長度下,用不同的力道吹,會有不同音高的聲音產生,這些音被稱為「諧音」。原管長所能發出的最低頻率稱作「第一諧音」,第二低的聲音稱作「第三諧音」,依此類推。在簫的演奏上,只要按住同樣的孔,用較大的力量吹,也同樣會發出較高的音;同樣地,在曲笛的演奏技巧上,有平吹、急吹等分別。為什麼吹越用力,音就越高呢?如果現在拿一個大吸管吹(要裝活塞),你會發現,只有在特定的位置(角度)下,才能吹出聲音。那麼,角度對於聲音也有影囉?這些現象的幕後黑手,就是在管口產生的「渦流」,渦流頻率也會隨著風速而增加;而且,渦流的頻率在特定風速下,會有特定的範圍。經由實驗可以大略歸納出,影響閉管駐波的三個主要變因,分別是「風速」、「風吹角度」、及「吹口至管口的距離」。吹得越急,風速就越快,渦流頻率越高,越易使諧音躍遷;吹的角度越小,越易產生渦流,亦易引發聲音;吹的距離越小,渦流越不?定,越易產生其他的擾動。以上就是本實驗的概略。This project is aimed to fine out how the closed tube can produce a sound. We know what harmonics are. When we hold a big straw and blow with increasing strength (the bottom should be in water), it will generate a higher sound. The high sound is called “harmonic”. The lowest sound it can make is “the first harmonic”, the second lowest sound is “the third harmonic”, and so forth. Likewise, when we press the same key on vertical bamboo flute with increasing strength, it’ll also produce a higher sound. But why do we use the strong air stream to blow the tube to cause the tone to transfer? Now let’s blow a straw flute. You will find that you need to blow in the particular position, and then the sound will be produced. So, is there any relationship between the blowing angle and the frequency? Actually, all these sound are produced by “vortex in the mouthpiece.” The frequency of vortex will increase with the wind speed. Moreover, the frequency of vortex has a range. In sum, the higher the wind speed is , the higher the frequency of the vortex is , and leads to the higher frequency of the sound. The smaller the blowing angle is, the easier the vortex will be produced; the easier the frequency will be made. The smaller the distance between the blowing angle and the frequency is, the more unstable the frequency will be. The above is the most important research in this project.
AtbZIPs 轉錄因子及其下游基因啟動子的特定序列之研究
Arabidopsis thaliana bZIPs(AtbZIPs)是一群影響層面相當廣泛的轉錄因子,一半以上的 AtbZIPs 基因表現受到光的調控,且近九成的分子機制尚未明瞭,因此探討 AtbZIPs 在植物光調控機制中所扮演的角色將是個有趣的課題。AtbZIP16 與 AtbZIP17 皆被推測會參與光的調控機制,然而迄今少有文獻針對這二個轉錄因子進行更多的研究。因此,我們想藉由細菌單雜合系統(Bacterial one hybrid system)的方法,找出能與 AtbZIP16 與 AtbZIP17轉錄因子結合的 DNA 序列,以瞭解此二轉錄因子調節下游基因表現的分子機制,並探討其在光訊息傳導途徑中所扮演的角色。針對 AtbZIP16 與 AtbZIP17,本實驗分別找到了 7 與10 種可能的結合序列。首先,經由資料庫比對分析,我們發現其序列上帶有的 motifs 功能,主要參與在光調控、環境逆境反應機制、組織發育、賀爾蒙調節、病原菌防禦、鈣離子訊息傳遞等方面,其中又以光調控佔最大的比例。再者,藉由將 motifs 的功能繪製成文氏圖,並與 HY5 (AtbZIP56)做比較,結果顯示,這三個轉錄因子雖同屬於 AtbZIP family,據推測皆受到光的調控,可能參與某些相似的生理調節過程,但都各自具備不同的功能,影響植物體的發育。如此的差異,表示他們有實質上的不同,值得我們更深入的研究。整體而言,本實驗結果除了說明 AtbZIPs 的功能確實廣泛之外,也顯示AtbZIP16 與AtbZIP17 是執行光訊號傳導很重要的調控因子。Arabidopsis thaliana bZIPs (AtbZIPs) is a group of transcription factors affecting a wide range of responses in Arabidopsis. The expression of more than half of the AtbZIPs is regulated by light, and the molecular mechanism for roughly 90% of these AtbZIPs remains unknown. Therefore, the roles AtbZIPs play in Arabidopsis light signal transduction is an interesting topic to pursue. AtbZIP16 and AtbZIP17 have been suggested to participate in the regulation mechanism mediated by light. However, only limited studies for these two transcription factors have been previously performed. For this reason, we intended to determine the DNA-binding sequences for AtbZIP16 and AtbZIP17 via the bacterial one hybrid system to reveal their target binding sites in the promoter region of their downstream genes and to speculate their possible biological function especially in light signal transduction pathway. We have identified 7 and 10 possible recognition sequences for AtbZIP16 and AtbZIP17, respectively. Using motif-finding programs analyses, we found the motifs identified are mainly involved in light and stress signaling, tissue development, hormone regulation, pathogen defense and Ca2+ signaling. Among these regulation pathways, sequences involved in light regulation owns the highest proportion. Furthermore, a Venn diagram was generated to compare functions of genes regulated by AtbZIP16, AtbZIP17 and HY5. Results revealed that, although these three transcription factors all belong to the AtbZIP family and are predicted to be regulated by some similar physiological regulation process (e.g. light), they still possess distict biological functions in plant development. Further studies are thus required to put these transcription factors into their shared and unique biological context. Taken together, the results of this experiment not only indicated light is a key regulation factor for AtbZIP16 and AtbZIP17, but also showed the function of AtbZIPs could be diverse.
磁性流体薄膜在水平磁場下結構型態之研究
本研究探討不同的控制變因,對磁性流體薄膜在水平磁場下有序結構的影響。我們發現,外加水平磁場於磁流體薄膜時,會形成一維有序磁鍊排列,磁鍊間距除會隨著磁場增強而變小外,另外其條件值如磁場強度、流體濃度、磁增率、薄膜寬度及厚度等也影響磁鍊間距。其中磁增率及磁流體濃度增加會使磁鍊間距變小,而凹槽寬度及薄膜厚度增加會使磁鍊間距變大等現象。至於其形成磁鍊的物理作用,我們假設薄膜有三種能量交互作用,即(1)磁鍊與外加磁場間的磁能UdH。(2)兩條同方向磁化的磁鍊間相互排斥所造成的磁能Udd。(3)熱能Uther等。藉由系統能量Udh+Udd+Uther最小化,我們導出了磁鍊間距和外加磁場之間理論上的關係,並比較實驗結果確實具有相當的一致性。因這些有序結構會引發許多的光學性質,將來這些特殊的光學性質預料應可製成可調式光柵、光開關及顯示器等光電元件,使磁流體在奈米世界及光電領域裡扮演重要角色。We investigate experimentally the structure of the magnetic chains formed in the magnetic fluid thin film under the influence of the external magnetic field parallel to the film surface. A one-dimensional ordered structure forced by magnetic chains can be obtain in the magnetic fluid film. It is worth noting that the ordered structure can be manipulated by changing the control parameters such as the magnetic field, concentration of magnetic fluid, the thickness of the film, the width of the film, and the dH/dt. On the other hand, the physical mechanism of forming the ordered structure can be also studied theoretically. These magnetic chains are regarded as magnetic dipoles and three possible interactions are condisered for the energy of the system: the attracting potential energy between the magnetic chain and H(denoted by UdH),the repulsive potential energy between two magnetic chains with parallel magnetizations(denoted by Udd), and the thermal energy Uther. The relationship between the chain distance △x and the applied magnetic field H was derived by minimizing the total energy of the system with respect to the chain distance. The experimental data is consistent with the theoretical results.
讓視域更遼闊--在有限的螢幕空間上顯示更多的圖形式資訊
在利用電腦螢幕來瀏覽圖形式資訊的時候,常常受限於螢幕的空間,沒有辦法在顯示\r 資訊整體結構的同時顯現細節部分的資料,目前的使用者介面所採用的方法有放大(zoom\r in)、捲動(scrolling)、開啟多個視窗(multiple view)等方法,這些方法雖然可以呈現出資\r 料的細節部分,但是仍有其個別的缺點存在,放大的方式會有遮蔽的情形;捲動的方式無\r 法同時地呈現整體結構;開啟多個視窗的方法使得使用者的眼睛必須在這些視窗間來回的\r 移動,造成麻煩。\r 魚眼鏡頭是一種短焦距、大視角的相機鏡頭,鏡頭成像的時候,越接近鏡頭中心的物\r 體會越放大而越遠的部分會越縮小,藉著發掘魚眼鏡頭的成像函數,我們發展出了一種新\r 的使用者介面,在瀏覽圖形式資訊的時候,能夠顯示整體的結構,並隨著滑鼠游標的移動,\r 以不開啟新視窗及無遮蔽的方式,即時地將想要觀察的部分局部放大以展現細部的資料,\r 這種使用者介面將具備現有方法的優點而無其缺點。\r Browsing the global structure of a large graph in limited screen space has the drawback that details\r are often too small to be seen. The most common solution provides a scrollable view. This shows full\r details at the region currently visible through the view, but hides the rest of the global structure.\r Alternatively, zooming into a part of the graph does show local details but misses the overall structure of\r the graph. The multiple views approach, one view of the entire graph and the other of a zoomed portion,\r has the advantage of seeing both local details and overall structure, but has the drawback that parts of the\r graph adjacent to the enlarged area are not visible at all in the enlarged views.\r A fisheye camera lens is a very wide angle lens that magnifies nearby objects while shrinking distant\r objects. It seems to be a tool for seeing local detail and global structure simultaneously. By means of\r exploring fisheye camera lens, we develop a user interface for browsing graphs using program analog of\r fisheye lens. Thus, our method seems to have all the advantages of the other approaches without suffering\r from any of the drawbacks.\r \r