長期服用安非他命對小鼠腦部紋狀體內蛋白質表
安非他命的濫用在台灣是非常嚴重的公眾健康及社會問題。安非他命會導致一連串的行為異常,包括在中腦紋狀體內釋放多巴胺及阻止多巴胺回收來增加使用者的活動力。由於安非他命會對腦細胞造成傷害,本研究的目的為探討低劑量、無立即毒性之安非他命(類似於人類使用習慣)長期施打下,是否會對C57BL6 小鼠大腦紋狀體內的蛋白質表現有影響。因此利用西方點墨法分析施打低劑量安非他命(2 到6 mg/kg) 約一星期之後,C57BL6 小鼠的大腦紋狀體中一些重要蛋白質(包括腺.酸受體A2A-R、第五亞型腺.酸環化.AC5、caspase-8 及PARP) 的表現是否有改變。實驗結果顯示,低劑量安非他命處理對這些蛋白質的表現並沒有明顯的差異。但利用二維電泳法可看到有少許蛋白質,在經過安非他命處理下有顯著的差別,如KIAA0193 homolog 、GOS-28、gammacrystallin A、malate dehydrogenase 和phosphoglycerate mutase isozyme B (PGAM-B)。這些蛋白質中,malate dehydrogenase 和PGAM-B 與代謝和產生ATP 有關,但前者是增加的,而後者減少,推測安非他命會影響神經細胞的能量代謝,因此長期施打安非他命對紋狀體造成的影響值得進一步探討。;The wide spreading use of amphetamine (AMPH) in Taiwan has become a serious public health and social problem. AMPH evokes a series of behavior abnormality including enhanced locomotor behavior by releasing dopamine and inhibiting dopamine-uptake in the striatum. Since AMPH is known to cause brain damage, the purpose of this study is to investigate the expression of several important proteins in the striatum of C57BL6 mice after chronic treatment with low and non-toxic dosages of AMPH (mimicking the common usage pattern of AMPH addict). C57BL6 mice were daily IP-injected with various dosages of AMPH (0 to 6 mg/kg) for one week. Expression levels of A2A adenosine receptor (A2A-R), adenylyl cyclase type V (AC5), caspase-8 and PARP in the striatum were analyzed by Western blotting analysis. Most proteins examined were not affected by this 1-week AMPH treatment. By the aid of two-dimensional gel electrophoresis, expressions of a few striatal proteins (such as KIAA0193 homolog, GOS-28, gammacrystallin A, malate dehydrogenase and phosphoglycerate mutase isozyme B (PGAM-B) in AMPH-treated mice were altered. Note that malate dehydrogenase and PGAM-B are two enzymes involved in energy metabolism and ATP generation. Interestingly, the former was increased and while the latter was decreased in AMPH-treated mice. Collectively AMPH may affect the energy metabolism in neuronal cells. These results suggest that the injury induced by long-term AMPH exposure warrants our further concerns and investigation.
共點圓、共圓點
我的研究是利用一些特殊的手法來探討所有情況皆會產生共點圓或共圓點。在一個由四條直線(無平行線組、無共點)所構成的圖形中,可以找到四個三角形及它們的外接圓。我知道它會共點,在此稱其為限制點。且若再添加一條直線,則可以任意的取出四條直線,分別找出它的限制點,而這些限制點又會共圓,吾稱其為限制圓。我欲證明此種情況會不斷延續下去。即是六條線時又會有限制點,七條線時又會有限制圓…。在本研究中,我利用了數學歸納法、特殊的編號方法以及「方向角」來做出此證明。由於固定的線組對應至固定的限制點或限制圓,希望能向找出其性質的方向發展。In my study, I use some skills to discuss all the situations which satisfy following conditions. The result is that concurrent circles or concyclic points will be found in every situation. In a graph consisting of four lines, conforming to conditions that any three lines won’t be parallel or intersect at one point, I can find out four triangles and their circumscribed circles. I know these circumscribed circles will be concurrent and I call the point at which all the circles meet “restricted point”. If another line is additionally added in the graph, I can discover that restricted points determined by any four lines in the graph will be concyclic. I call the circle “restricted circle”. What I want to prove is that the above situation will go on. In other words, restricted points will exist when I have six lines, and restricted circles will exist when I have seven lines and so on. In my study, I used Principal of Mathematical Induction, special ways of numbering points and circles, and “orientated angle” to prove my hypothesis. Because of particular line groups corresponding with particular restricted points or restricted circles, the further work I want to attain is to find the relation of them.
聞音起舞一 聲音對跳舞草小葉擺動之影響
跳舞草(Desmodium gyrans) 屬多年生木本豆科植物,其特殊之處在於小葉會對外界的聲音有所感應。本實驗以訊號產生器固定聲音強度,發出2、4、6、8、10 KHz不同聲頻之聲波刺激跳舞草,並以每5秒為單位紀錄小葉擺動角度之變化,分析其擺動週期、擺動幅度等不同的變化。實驗結果為跳舞草小葉之擺動週期與擺動振幅是隨著聲音頻率的增加而呈現sin函數變化之圖形。Desmodium gyrans (Leguminosae) is a perennial woody plant. Acoustic waves can stimulate stipules and cause to oscillation. This experiment used the coroma to immobilize strength, emitted the frequency of 2, 4, 6, 8, 10 KHz acoustic wave to stimulate stipules and recorded the changes of oscillation angle every five seconds. We calculated the oscillation cycle、oscillation span, and analyzed experiment data. The most importance result is that the experiment graphs of oscillation angle and oscillation span with different frequency of acoustic waves display sin function metamorphic diagram.
電解與磁場的秘密.
金屬離子在磁場中的流動速率會略有改變,尤其是在強磁場中時,其影響更是顯著,即 【MHD 磁流動效應】,造成整體電解液中離子的流動,此流動比擴散速率佔優勢。再利用「磁 矩」具有向量性質,探討不同金屬離子(Na+、K+、Fe3+、Al3+、Mg2+)及MnO4 -在磁場角度 相同但強度不同的情況下;及磁場角度不同但強度相同的情況下,對電解速率的影響。 經實驗發現有以下結論: 一、由法拉第電解第一定律出發,加以實驗數據分析,可推導出一關係式: 電解速率Rρ= k ×∫〈∣H 向量∣×∣cosθ∣〉×∣E 向量∣ (k 單位:g / C˙weber˙s) 二、電解效率隨價數增高而增快。 三、較強的電解質,其對磁場的感應也越大,如果就同一族而言,往 下其活性越強,對磁場的感應也越強。 The flowing rate of Metal ion changes slightly in magnetic field. This influence is especially remarkable while the magnetic force is very strong, that’s【MHD (magneto Hydrodynamic Effect ), which gives rise to ionic flowing all over the electrolyte. This flowing rate is superior to expanding rate. Further, basing on the magnetic torque ’s vector trait, this research studies how electrolysis velocity affects different metal ions (Na+、K+、Fe3+、Al3+、Mg2+) and MnO4 - under following situations: Some results are found through the experiment. 1. Begin with Farad Electrolysis First Law, and take the experimental analysis into account, then a relative formula comes out as bellow. Electrolysis Rate Rρ= k ×∫〈∣H∣×∣cosθ∣〉×∣E∣ (k:g / C˙weber˙s) 2. Electrolysis efficiency accelerates by the increasing price amount. 3. Active electrolytes get strong response to the magnetic field. For the same group, the more active the electrolytes are, the stronger it responds to magnetic filed.
停車就是彈硬幣
在這個科展中我們要研究兩個非常有趣的問題:\r 停車場問題 與 彈硬幣遊戲.\r 停車場問題是這樣的:在一條單行道上有n個車位,編號從1到n。現在有n個司機排成一排要進入停車。但是每個司機都有怪癖,各自有最想要停的位子。他們依序將車子開進單行道,如果想要停的位子是空的,當然停在這個位子。但是如果不巧那個位子已經被停了,不得已只好找下一個空位,姑且停之。但是如果往下找都沒有空位,由於是單行道,司機就只好開走不停了。\r 比如說,如果現在有五輛車,司機的喜好分別是(3,1,2,5,2)。則五輛車都可以順利停車。但是司機的喜好如果是(3,1,4,5,4),有些車就無法停車了。\r 彈硬幣遊戲是這樣的:考慮圓內接正n+1邊形,任意兩點都連線。這正n+1邊形中有一個頂點P是特殊的,每個頂點上一開始都放有一些硬幣(各點硬幣數可以不同)。如果P以外的某個頂點上的硬幣數n個,我們可以對這個頂點進行操作:一次操作是指將這個頂點上的硬幣各分一個給每個其他頂點。點P只在其他點都無法操作時操作。我們不理會頂點P上的錢數,因此這個遊戲可以無限地玩下去。