全國中小學科展

臺灣

極速火龍-利用軟片顯影法觀測氫爆的火焰傳遞

用塑膠軟管作為氫爆安全反應器,從封閉端點燃氫氧預混氣,管中火焰\r 傳遞快速,肉眼難以觀察,因此研製「氣爆顯影記錄器」來觀測,如下圖,\r 光纖導引偵測點的火光至暗箱,記錄於高速旋轉的軟片,從光電轉速計讀取\r 轉速,軟片沖洗後量測各顯影間距,可得火焰位置與時間的關係圖,量測時\r 間最小刻度可達2. 2 微秒。\r 解讀軟片的顯影,得知氫爆初期,火焰加速傳遞,大部分在25cm 位置\r 左右,火焰的速率出現急速飆升(爆燃轉變為爆震),而且火光亮度也急速升\r 高,有時火焰速率出現飆升過高,再回降趨於穩定?的現象,在50 cm 位置\r 左右,火焰進入等速傳遞階段,此階段有穩定的火焰模型,火焰頂端的亮度\r 最高,往後亮度遞減。

符合人類視覺觀感之數位影像自動化版調重製技術

台灣兒科病人罹患神經母細胞瘤者可檢測到微小病毒B19的存在

罹患神經母細胞瘤的兒科病人,尤其是罹患stage IVs 神經母細胞瘤者,他們有些伴隨著非常嚴重的貧血,但卻檢測不出神經母細胞瘤已經侵犯骨髓;有時病情來勢洶洶,尤其是腫瘤細胞中已可偵測到N-myc 基因增幅者,診斷時腫瘤細胞可能已在腹腔四處擴散並已侵犯大部分的肝臟。但是,某些這種病患,特別是腫瘤細胞中N-myc 基因沒增幅者,即使在沒有治療的狀況下卻可能有自然恢復的現象,也就是腫瘤細胞會自動消退,但原因仍待進一步的證實與探討。可是,這些病人在其病情最嚴重的時候,骨髓內紅血球母細胞形態上的改變顯示可能與病毒感染有關。但是關於病毒來源的研究,現有的資訊仍然十分有限,其中最重要的是,病毒感染與引發其後天之免疫作用是否有關,更需要深層的研究。因此,為更進一步了解罹患神經母細胞瘤之兒科病人的病毒感染及病毒蛋白表現的作用,我們這次研究的目的在檢驗罹患神經母細胞瘤及貧血之兒科病人與微小病毒B19 (PVB19)、Epstein-Barr Virus (EBV)、腸病毒71 型(EV 71)和巨細胞病毒(CMV)的關係,以及病毒蛋白表現對這些病人的作用與臨床意義。In pediatric patients with neuroblastoma, in particular, those with stage IVs neuroblastoma, sometimes the disease was combined with severe anemia. However, no tumor involvement was detected in the bone marrow. Although some of these patients may have N-myc gene amplification, and the disease could have invaded many abdominal organs, especially liver, interestingly, the disease might regress spontaneously in some of these patients. The medical reason of the spontaneous regression, nonetheless, remains to be determined. It is worth noting that morphological changes of erythroid progenitor cells in the bone marrow have suggested virus infection in these pediatric patients. However, the available information of viral origin is limited. Furthermore, it is possible that the virus infection in these patients could be associated with the revocation of immune responses related to the spontaneous regression of the tumor. In this study we will investigate the relationship of parvovirus B19 (PVB19), Epstein-Barr virus (EBV), enterovirus 71 (EV71) and cytomegalovirus (CMV) with neuroblastoma by PCR in Taiwanese pediatric patients. Moreover, we will study the effect and the clinical significance of viral gene expression as well as N-myc gene amplification in these patients.

巨型小翼效應—未來長程客機經濟省油妙方

本研究主要是探討翼端小翼對飛機飛行的影響,翼端小翼在現在不少的飛機上都有這種設計,假設小翼可以阻止飛機機翼末端的氣流上旋,進而增加升力與推力,讓飛機能提高飛行時的效率,為了驗證這個假設,因此製作了簡易風洞對小翼的升力與阻力進行定性和定量的探討。升力與阻力的定性定量探討是經由10 組主機翼與五個小翼組合,共有2000 次的測試記錄,再轉化成折線圖予以比較研究,而得到一個穩定性數值結果。這測試實驗的數值結果顯示:小翼可以增加升力,但是也會增加阻力,為了降低阻力,小翼的剖面最好是有弧度。The purpose of this research is to find out the effect resulted from the winglet of the plane to the flight. Many a winglet is nowadays designed for the airplane. Assumes the winglet can stop the air of the tail section of the airplane to revolve up, further increase the force of the raise and the push, and uplift the efficiency of the flight. In order to proof this assumption is correct, so makes an easy air hole to do the research of qualitative and quantitative analysis for the force of the raise and resistance. After about 2000 records tested through the combination of ten sets of the main wing and five tiny wings, and transference of curve diagram , we get a steadily value result. This test result appear the first the winglet can increase the force of the raise, and so do the resistance, and the second to have the force of the resistance decreased, it might be better the section of the winglet is not straight but circular.

印度莕菜由沉水型轉為浮水型的支撐機制探討

The special life cycle of the Nymphoides indica: The veins and petioles of the pleustonic leaves can asexually reproduce adventitious buds. Pleustonic adventitious buds will change the density of the plants and sink into water. When the root of submersible plants attaches to the bottom of the pool, they will extend stems to the water surface and resume the life cycle. Reticulate sigmons and astral sclerenchyma appears in the process of transformation. Astral sclerenchyma merely appear in the species of which its leaves float above the water surface, and Nymphoides sp. are the most obvious. The cell wall thickness of astral sclerenchyma is even. The cells are hollow and full of water, and they will utilize water to change turgor between axes and spines. This is also proved in imitating experiments. The reticulate sigmons are frequently seen among aguatic plants, and the horizontal structures prevent air space from collapsing. These two structures make the thin stems of Nymphoides indica sustain the leaves instead of being crushed by the floating water. 印度莕菜 ( Nymphoides indica )獨特的生長週期:浮水型葉的葉脈和葉柄可以無性繁殖不定芽,浮水型的不定芽會改變植株的密度而沉入水中,當沉水型植株的根系在池底固著後,便會以莖延伸出水面,再次展開浮水型葉的成長週期。轉變過程中會出現網狀的橫膈和星狀厚壁細胞。星狀厚壁細胞僅出現於葉片需由水中浮出水面生長的植物種類,而莕菜屬植物更明顯。星狀厚壁細胞其細胞壁厚度均勻,細胞中空且充滿水分,會利用水分在中軸與突起的棘間移動來改變膨壓變化,在模擬的實驗中也得到證實。網狀的橫膈在水生植物中是較常見到的構造,水平方向的支撐可以讓氣室不會塌陷,兩種構造的作用下使得印度莕菜細長的莖能夠支撐葉片,不會被流水沖斷。

以Hα、K-Line、UV、Soft X-ray波段太陽影像試求太陽光球層之上的徑向較差自轉.

本研究以網路上Soft X-ray、UV195Å、K-Line、Hα波段太陽影像上黑子,光斑經度位置的逐時變量,試求太陽自光球層以上各層是否有越高層轉速越慢的現象?經試用數種方法求大量黑子、光斑位置,最後以省時,且誤差減小的"由PhotoShop軟體讀出黑子、光斑在圖檔中位置,於EXCEL軟體中套用日面座標公式",以Peter Meadows的黑子定位程式抽樣對驗,來求其經緯度值。結果:在任何緯度,光球層以上各層轉速不同(徑向較差自轉現象),但並非越高層越慢,而是在大部分緯度處其各層速度變化呈 的快慢交替現象。

「果」然不一定-臺東水果酸鹼性的研究

水果是日常生活中食用的食物之一,每天或多或少都會吃水果,但是吃進口裡的水果到底是酸性、中性還是鹼性呢?我們藉由踏查臺東縣當地種植的水果,以石蕊試紙、廣用試紙和筆型酸鹼度計檢測這些水果的酸鹼值。有趣的是這些水果竟然都是酸性的,酸鹼值的分布範圍從pH 1.94到 6.61。還發現有些水果彼此之間的酸鹼值差異很大,有些卻很小;相同的水果,不同的種植地區及成熟度也顯示了不一樣的酸鹼值。經過這些調查研究,我們繪製了臺東鄉鎮地區水果酸鹼地圖,紀錄常見的水果與地區特色物種的酸鹼值。

門神保全機器人(Door Angle Robot)

The larceny is always annoys our family and our society. They usually steal on the day when people working in the office or studding in the school. They always wait for people leave the house, and try the bell until them confirm the owner of the house leaved and nobody at home. Then they will open the door or break the lock of door. So we can find that if any body home or the lock is very hoard to open or to break. Then the thief is always choice to give up. That prove if we con let the thief think the house is some body home. Then it can to avoid larceny. This project is about how to design a system which is used AI technology to be a robot that is like a human. That robot can talk to the thief and can be a special lock when the thieves try to break the lock of door. The goal of this project is to design a robot that will be a door angel. It will let thief thinks that is some people always in the house. So they can not to steal in this house. We use the AI speech recognition & house environment control I/O system to be a robot which is setup in the door. It is like an angel to protect our home and family. And can stop the larceny. 「住宅竊盜犯罪」一直持續困擾著人類社會,住宅竊案最常發生於大白天,小偷常趁著家中成員上班、上學等時機,稍加觀察,再加以測試(按門鈴) ,確定家中無人,下手破壞鎖具侵入搜括;小偷只要遇到非常難開的鎖或認為有人在家就不會進一步的行竊。所以這證明只要讓小偷認為家裡有人,就能防止竊案的發生,而我們的研究目的就是如何在小偷還在徘徊尋找目標時,就要讓他感到這一家不能偷,如何讓他感覺家裡有人,進而打消入侵行竊的意念。我們希望能設計一套系統,利用AI人工智慧語音辨識及家庭環境控制,來建立一個充滿智慧的門神機器人,來事先嚇阻小偷的行動,就像門神一樣,可以預防竊案的發生,並整合大門門鎖內鎖與家電,形成智慧型的門神機器人,來保佑我們的家庭,也讓竊盜率降低,作為竊盜犯罪防治的利器。

綠色化學-應用吸水高分子螯合銀離子並製成奈米銀

聚丙烯酸(PAA)是尿布中吸水成份,我們利用其結構上的羧基螯合Ag+,並成功以甲醛將Ag+還原成奈米銀。但我們意外發現螯合Ag+的PAA白色粉末在沒有其他還原劑存在下也會漸漸變成黃色,與「利用甲醛還原製得的奈米銀」顏色十分相似。本實驗即揭開此粉末變色真相,希望能在不使用額外還原劑下,直接以PAA將螯合的Ag+製成奈米銀,不僅具環保與實用價值,更能使奈米銀製程朝向綠色化學。我們透過水溶性聚丙烯酸鈉(SPA)在均相中進行變色機制探討及影響變因的研究,找出有利的反應條件,再應用於PAA。研究證實PAA能將螯合的Ag+同步還原成奈米銀,反應機制與檸檬酸鈉作用模式相似,而提升濃度、溫度或照光有利於反應,酸性條件則不利,照各種色光也有所差異。

費氏蛇

At the website “MathLinks EveryOne,” we found a problem “Snakes on a chessboard,” which was raised by Prof. Richard Stanley. The following is the problem. A snake on the m n chessboard is a nonempty subset S of the squares of the board with the following property: Start at one of the squares and continue walking one step up or to the right, stopping at any time. The squares visited are the squares of the snake. Prove that the total number of ways to cover an m × n chessboard with disjoint snakes is a product of Fibonacci numbers. We call the total number of ways to cover a chessboard with disjoint snakes “the snake-covering number.” This problem hasn’t been solved since it was posted on September 18, 2004, so it aroused our interest to study it. First, we used the way in which we added each block to the chessboard, and therefore we discovered some regulations about the snake-covering number of the1 × n , 2 × n and 3 × n chessboard. Through “recursive relation” and “mathematical induction”, we proved the general term of the snake-covering number of the1 × n , 2 × n and 3 × n chessboard. In the following study, we found a key method in which we added a group of blocks to the chessboard. Finally, we proved the general term of the snake-covering number of the m × n chessboard. Also, we discovered the way to figure out the snake-covering number of the nonrectangular chessboard.在網站“ MathLinks EveryOne ”中,我們找到了一個有趣的問題“棋然上的蛇” ( Snakes on a chessboard ) ,這個問題是由教授 Richard Stanley 所提出。問題如下:在m x n棋盤形格子上,蛇由任意一格出發,但蛇的走法只能往右 → ,往上↑,或停住 ‧ 若此蛇已停住,將由另一條蛇來走,且不同蛇走過的格子不可重疊”證明:將 m × n 棋盤形格子完全覆蓋的總方法數為費氐( Fibonacci )數列某些項的乘積。我們將把棋盤形格子完全覆蓋的所有方法數稱之為“蛇填充數” 由於這個問題自從 2004年 9 月 18 日被登在網站上後,還沒有人提出解答,於是引發了我們研究的興趣。首先,我們使用了將一個一個格子加到棋盤上的方法,並發現了 l × n 、 2 x n、 3 × n 棋盤形格子蛇填充數的一些規律。我們使用遞迴關係及數學歸納法來證明 l x n 、 2 x n , 3 × n 棋盤形格子蛇填充數的一般項。在接下來的研究中我們發現一個特別的方法,一次增加數個方塊 ‧ 最後我們證明了,m x n, ,棋然形格子的蛇填充數的一般項 ‧ 而且,我們也找到如何求出不規則棋盤形格子的蛇填充數。