台灣兒科病人罹患神經母細胞瘤者可檢測到微小病毒B19的存在
罹患神經母細胞瘤的兒科病人,尤其是罹患stage IVs 神經母細胞瘤者,他們有些伴隨著非常嚴重的貧血,但卻檢測不出神經母細胞瘤已經侵犯骨髓;有時病情來勢洶洶,尤其是腫瘤細胞中已可偵測到N-myc 基因增幅者,診斷時腫瘤細胞可能已在腹腔四處擴散並已侵犯大部分的肝臟。但是,某些這種病患,特別是腫瘤細胞中N-myc 基因沒增幅者,即使在沒有治療的狀況下卻可能有自然恢復的現象,也就是腫瘤細胞會自動消退,但原因仍待進一步的證實與探討。可是,這些病人在其病情最嚴重的時候,骨髓內紅血球母細胞形態上的改變顯示可能與病毒感染有關。但是關於病毒來源的研究,現有的資訊仍然十分有限,其中最重要的是,病毒感染與引發其後天之免疫作用是否有關,更需要深層的研究。因此,為更進一步了解罹患神經母細胞瘤之兒科病人的病毒感染及病毒蛋白表現的作用,我們這次研究的目的在檢驗罹患神經母細胞瘤及貧血之兒科病人與微小病毒B19 (PVB19)、Epstein-Barr Virus (EBV)、腸病毒71 型(EV 71)和巨細胞病毒(CMV)的關係,以及病毒蛋白表現對這些病人的作用與臨床意義。In pediatric patients with neuroblastoma, in particular, those with stage IVs neuroblastoma, sometimes the disease was combined with severe anemia. However, no tumor involvement was detected in the bone marrow. Although some of these patients may have N-myc gene amplification, and the disease could have invaded many abdominal organs, especially liver, interestingly, the disease might regress spontaneously in some of these patients. The medical reason of the spontaneous regression, nonetheless, remains to be determined. It is worth noting that morphological changes of erythroid progenitor cells in the bone marrow have suggested virus infection in these pediatric patients. However, the available information of viral origin is limited. Furthermore, it is possible that the virus infection in these patients could be associated with the revocation of immune responses related to the spontaneous regression of the tumor. In this study we will investigate the relationship of parvovirus B19 (PVB19), Epstein-Barr virus (EBV), enterovirus 71 (EV71) and cytomegalovirus (CMV) with neuroblastoma by PCR in Taiwanese pediatric patients. Moreover, we will study the effect and the clinical significance of viral gene expression as well as N-myc gene amplification in these patients.
巨型小翼效應—未來長程客機經濟省油妙方
本研究主要是探討翼端小翼對飛機飛行的影響,翼端小翼在現在不少的飛機上都有這種設計,假設小翼可以阻止飛機機翼末端的氣流上旋,進而增加升力與推力,讓飛機能提高飛行時的效率,為了驗證這個假設,因此製作了簡易風洞對小翼的升力與阻力進行定性和定量的探討。升力與阻力的定性定量探討是經由10 組主機翼與五個小翼組合,共有2000 次的測試記錄,再轉化成折線圖予以比較研究,而得到一個穩定性數值結果。這測試實驗的數值結果顯示:小翼可以增加升力,但是也會增加阻力,為了降低阻力,小翼的剖面最好是有弧度。The purpose of this research is to find out the effect resulted from the winglet of the plane to the flight. Many a winglet is nowadays designed for the airplane. Assumes the winglet can stop the air of the tail section of the airplane to revolve up, further increase the force of the raise and the push, and uplift the efficiency of the flight. In order to proof this assumption is correct, so makes an easy air hole to do the research of qualitative and quantitative analysis for the force of the raise and resistance. After about 2000 records tested through the combination of ten sets of the main wing and five tiny wings, and transference of curve diagram , we get a steadily value result. This test result appear the first the winglet can increase the force of the raise, and so do the resistance, and the second to have the force of the resistance decreased, it might be better the section of the winglet is not straight but circular.
費氏蛇
At the website “MathLinks EveryOne,” we found a problem “Snakes on a chessboard,” which was raised by Prof. Richard Stanley. The following is the problem. A snake on the m n chessboard is a nonempty subset S of the squares of the board with the following property: Start at one of the squares and continue walking one step up or to the right, stopping at any time. The squares visited are the squares of the snake. Prove that the total number of ways to cover an m × n chessboard with disjoint snakes is a product of Fibonacci numbers. We call the total number of ways to cover a chessboard with disjoint snakes “the snake-covering number.” This problem hasn’t been solved since it was posted on September 18, 2004, so it aroused our interest to study it. First, we used the way in which we added each block to the chessboard, and therefore we discovered some regulations about the snake-covering number of the1 × n , 2 × n and 3 × n chessboard. Through “recursive relation” and “mathematical induction”, we proved the general term of the snake-covering number of the1 × n , 2 × n and 3 × n chessboard. In the following study, we found a key method in which we added a group of blocks to the chessboard. Finally, we proved the general term of the snake-covering number of the m × n chessboard. Also, we discovered the way to figure out the snake-covering number of the nonrectangular chessboard.在網站“ MathLinks EveryOne ”中,我們找到了一個有趣的問題“棋然上的蛇” ( Snakes on a chessboard ) ,這個問題是由教授 Richard Stanley 所提出。問題如下:在m x n棋盤形格子上,蛇由任意一格出發,但蛇的走法只能往右 → ,往上↑,或停住 ‧ 若此蛇已停住,將由另一條蛇來走,且不同蛇走過的格子不可重疊”證明:將 m × n 棋盤形格子完全覆蓋的總方法數為費氐( Fibonacci )數列某些項的乘積。我們將把棋盤形格子完全覆蓋的所有方法數稱之為“蛇填充數” 由於這個問題自從 2004年 9 月 18 日被登在網站上後,還沒有人提出解答,於是引發了我們研究的興趣。首先,我們使用了將一個一個格子加到棋盤上的方法,並發現了 l × n 、 2 x n、 3 × n 棋盤形格子蛇填充數的一些規律。我們使用遞迴關係及數學歸納法來證明 l x n 、 2 x n , 3 × n 棋盤形格子蛇填充數的一般項。在接下來的研究中我們發現一個特別的方法,一次增加數個方塊 ‧ 最後我們證明了,m x n, ,棋然形格子的蛇填充數的一般項 ‧ 而且,我們也找到如何求出不規則棋盤形格子的蛇填充數。