全國中小學科展

臺灣

治癌良「芝」—探討樟芝萃取物對口腔癌幹細胞的影響

研究旨在檢測牛樟芝菌絲萃取物4-Acetylantroquinonol B和Antrodin C對口腔癌幹細胞的影響。過去研究發現細胞膜蛋白CD44的表現與癌幹性有密切關係,因此本實驗著重於追蹤CD44的表現情況。透過3D懸浮培養獲得腫瘤球來擴增癌幹細胞群並用流式細胞儀分析。隨著兩種牛樟芝萃取物的濃度增加,CD44表現量下降,顯示此二化合物可能可以抑制其表現。實驗顯示牛樟芝萃取物不僅抑制癌幹細胞的存活率,且在低濃度下顯著抑制成球效率,還能促進癌幹細胞的凋亡。研究結果說明牛樟芝萃取物對癌幹細胞有影響,而這個發現可能可以提供潛在的治療靶點,有益未來口腔癌治療發展。

麩醯胺酸誘導阿拉伯芥的受體表現

自然界中,植物以NO₃⁻和NH4+作為主要氮源,在吸收後轉化為麩胺酸(Glu)和麩醯胺酸(Gln)作為第一產物進行基本生理反應,在我們實驗室先前的研究中,發現Gln會誘導阿拉伯芥側根生長、壓力反應和抗病性,所以提出了一種假說「細胞外的Gln是營養氮源,也是一種“危險訊號”」,藉由可能存在的Gln的受體表現。目前我進行了其中三組受體的測試,分別是wall-associated kinase2(WAK2)、wall-associated kinase3(WAK3)和EF-Tu受體(EFR),WAK家族是穩定細胞壁果膠的受體激酶,然而我們實驗中發現WAK3在wak3 muntant的表現是不穩定的。EFR為接收EF-Tu(elongation factor thermal unstable)的模式辨識受體(PRR),參與活化植物防禦及PAMP-triggered immunity (PTI),efr muntant在Gln的誘導下表現了防禦相關基因與水楊酸生成之相關基因。本研究將有助於深入理解Gln在植物防禦和側根生長中的功能及其調控機制,並為未來的作物改良和病害防治提供理論基礎。

法拉第波輔助合成奈米鎳並應用於有機污染物的快速脫色 Nanostructured Nickel Synthesized through Faraday Waves and Its Application to Rapid Contaminants Decolorization

超音波已廣泛用於奈米粒子的製備,然可聽聞音對奈米粒子製備的影響卻少有研究。本研究以簡易喇叭裝置產生可聽聞音並在溶液表面產生法拉第波及內部流動,來輔助製備奈米鎳。法拉第波是一種表面非線性駐波,透過調整容器形狀、振動頻率等,可產生不同波形。本研究嘗試在法拉第波輔助下,以化學還原法及電沉積法製備出不同性質的奈米粒子。SEM量測並比較無輔助、法拉第波輔助、超音波輔助製備出的奈米鎳的形貌、分布的差異。並將其應用於有機物(即剛果紅、亞甲藍、4-硝基苯酚、2-硝基苯酚)之催化還原。而由SEM量測、催化還原結果及理論模擬反應熱可知,法拉第波確實能夠改善奈米鎳的粒徑大小、分散性、對氫的吸附能力及催化還原能力。

Japanese triangle之探討與推廣

本作品在探討2023年IMO問題5中所提到的關於日式三角形(Japanese triangle)之問題,日式三角形是將1+2+...+n個圓排成正三角形的形狀,使得對所有i=1,2,...,n,由上往下數的第i列有i個圓,且每一列都有一個圓塗成紅色。日式三角形中的忍者路徑是一串由最上列到最下列的n個圓,其中每個圓連到其下一列與之相鄰的兩圓之一。我們分成兩個研究方向:一、找出k的最大值,保證在每一個日式三角形中,有一條包含至少k個紅色圓的忍者路徑。二、找出k的最小值,保證在每一個日式三角形中,有一條包含至多k個紅色圓的忍者路徑。 研究中,我們一般化每列的紅圓數為任意自然數𝓵(若該列總圓數不足𝓵則以該列總圓數塗色),並將問題推廣至空間三角垛的情形。最後,我們將𝓵=l的情形推廣至高維空間。

微生物燃料電池結合外加磁場與TiO2海綿--對於提升產電與柴油降解效率之潛能評估

柴油汙染已然造成嚴重的生態危機,我們藉由微生物快速生長與代謝有機物的特性,結合MFC解決油汙。將自製PVB-TiO2海綿加入MFC陽極反應室中,在兩側添加釹磁鐵形成外加磁場。為提升MFC代謝柴油效能,我們探討MFC電極種類、PVB-TiO2海綿的TiO2添加濃度、磁鐵數量與方向等參數。結果顯示,添加PVB-TiO2海綿(12 g/L)及外加相斥兩顆磁場,對COD降解率、平均輸出電壓、VFA代謝產量與柴油降解率,較未添加組有最顯著提升。分別達成COD降解率增為1.4倍、平均輸出電壓增為1.8倍、柴油降解率增為2.0倍之效果。預期本實驗未來能對柴油汙染提供解方,降低柴油洩漏對環境的衝擊。

Feasible fabrication of chitosan capped mesoporous silica nanoparticles as a smart mucoadhesive drug delivery platform for dexamethasone

中孔二氧化矽納米顆粒(MSN)由於其高孔隙率而適合成為藥物載體,可增加ul藥物的負載量。幾丁聚糖是一種帶正電的聚合物,用於修飾MSN表面,以達到強力的靜電吸附力,並進一步提高藥物負載能力,以及可持續併緩慢藥物釋放的控制。 MCM-41和 MCM-48型的MSN,通過 CTAB界面活性劑為模版,以溶膠-凝膠法制備。SBA-15型的MSN由 P123為模版製備。MCM-41 通過戊二醛的交聯進一步被幾丁聚糖包覆 (MCM-41-CHIT)。 利用 X 射線繞射儀驗證了所有載體皆是中孔洞的六方密堆積晶體結構。利用傅里葉變換紅外光譜,鑒定了烷基、胺基、和二氧化矽官能團,證實了表面的幾丁聚糖。 MCM-41-CHIT 的地塞米松載藥量為53.7%。MCM-41有突發釋放的現象,在 兩天內釋放出 80%。另一方面,MCM-41-CHIT中的藥物釋放,表現出恆定的釋放,五天後僅釋放出19.7%。 這項研究確定了MCM-41-CHIT 是可應用在粘膜吸附藥物遞送系統,可做為好的候選藥物載體。

非對稱反摺溝槽陣列過熱表面之液滴自推性能及冷卻效率

工業中時常會運用噴霧冷卻,以液滴的潛熱變化冷卻高溫表面。因此為了提升高溫噴霧冷卻的效率,本研究基於過往文獻與(Hsu, 2023)共同研究微奈米結構表面ARG上液滴的碰撞運動,並由實驗推論高溫表面蒸氣層和氣泡推力的作用。接著由單一液滴碰撞實驗推導實驗和理論受力模型並進行比較。最後進行單一液滴冷卻實驗並推論連續液滴冷卻實驗結果。本研究發現ARG表面的各運動特性均優於文獻,且利用液滴的受力更全面地了解液滴運動和冷卻效率的關係,更在最後驗證其冷卻效率優於對照組,並發想探討連續液滴冷卻的實驗方法,以更貼合工業上實際的噴霧冷卻。經過此研究,ARG表面能夠實際應用於工業上高溫表面的噴霧冷卻。

利用體外測試方法探討生醫水凝膠與材料表面附著性質之關聯 Investigation of the relationship between biomedical hydrogels and surface adhesion properties using in vitro testing methods

醫療級水凝膠在注入人體後容易因運動行為而產生位移,因此需要體外測試方法來評估水凝膠的附著性,以製備適合不同部位使用的水凝膠。本研究設計兩種測試方法來模擬水凝膠在人體的斜角流動狀態和旋轉流動狀態的位移,藉此推斷水凝膠施打入體內後的變化。本研究採用兩種不同黏性的水凝膠和不同粗糙度表面如人工皮、陶瓷和金屬來模擬人體部位的接觸面,探討水凝膠的附著性質。斜角流動測試下,黏性高的水凝膠在陶瓷和金屬 30°、45°及90°的斜角下幾乎不會流動,黏性低的水凝膠則會隨著角度的增加而流速加快。陶瓷粗糙度最高,水凝膠在其表面上附著性質較強。旋轉流動測試下,高黏性的水凝膠在模擬跑步時都具穩定性,而低黏性則只適用於較穩定的步行狀況。體外測試方法能區分不同黏性水凝膠的附著性質,說明此方法可作為篩選適用的水凝膠的依據。

麩醯胺酸誘導阿拉伯芥的受體表現

自然界中,植物以NO₃⁻和NH4+作為主要氮源,在吸收後轉化為麩胺酸(Glu)和麩醯胺酸(Gln)作為第一產物進行基本生理反應,在我們實驗室先前的研究中,發現Gln會誘導阿拉伯芥側根生長、壓力反應和抗病性,所以提出了一種假說「細胞外的Gln是營養氮源,也是一種“危險訊號”」,藉由可能存在的Gln的受體表現。目前我進行了其中三組受體的測試,分別是wall-associated kinase2(WAK2)、wall-associated kinase3(WAK3)和EF-Tu受體(EFR),WAK家族是穩定細胞壁果膠的受體激酶,然而我們實驗中發現WAK3在wak3 muntant的表現是不穩定的。EFR為接收EF-Tu(elongation factor thermal unstable)的模式辨識受體(PRR),參與活化植物防禦及PAMP-triggered immunity (PTI),efr muntant在Gln的誘導下表現了防禦相關基因與水楊酸生成之相關基因。本研究將有助於深入理解Gln在植物防禦和側根生長中的功能及其調控機制,並為未來的作物改良和病害防治提供理論基礎。

探討候選基因對角質層與氣孔發育的調控之影響

植物進化成陸生植物的過程中,氣孔和角質層是關鍵特徵。氣孔由保衛細胞調控,負責二氧化碳進入和水分蒸發;角質層則保護植物免受水分流失及環境壓力。調控這些特徵的基因尚不明確。本研究利用全基因組關聯分析(GWAS)探討阿拉伯芥的角質層和氣孔發育。GWAS結果顯示,與角質層厚度相關的基因位於第二條染色體,而與二氧化碳吸收效率相關的基因位於第五條染色體。氣孔導度和水分吸收效率的調控基因可能在第一、三、四條染色體上。角質層變薄時,氣孔密度下降,導致氣孔導度和水分蒸散率上升;而當角質層通透性增加到一定程度時,二氧化碳固定效率達飽和。此外,透過反向遺傳學篩選候選基因,研究特定基因對角質層合成及光合作用效率的影響。突變株分析顯示,抑制控制角質層或氣孔的基因會促進另一性狀的表現,未來可進一步探討自然族群中相關基因的功能。