全國中小學科展

2017年

奈米濃縮晶片運用於人體體液濃縮之研究

本實驗探討低濃度離子的檢測方法,實驗利用微奈米流道濃縮晶片,將樣本進行濃縮。由於奈米離子選擇性流道對於液體離子導電度,即離子價性有所限制,因此,我們首先測試人體體液的可濃縮性。 我們採用的樣本為血清、尿液、唾液及汗液,研究主軸是將螢光分子加入樣本內,做為濃縮的指示劑,並測試該檢體溶液是否能夠濃縮。藉由濃縮提高待測溶液的濃度,使得在少量檢體、稀薄濃度的狀況下,也可量測樣品內的物質濃度。在檢測方面,我們以具有奈米結構的表面電漿共振技術(Surface Plasmon Resonance, SPR)作為檢測平台。奈米結構表面會因吸附物質的改變,導致表面折射率改變,使得吸收光譜產生位移。因此日後可以依照光譜圖的位移量,推估檢體溶液的離子濃度,期盼此技術能運用於生醫晶片及簡易攜帶型生醫檢測器(Bio-sensor)上。

神農菌、嚐百草-利用基因轉殖的大腸桿菌偵測中草藥內的重金屬

中藥一直存有重金屬汙染的疑慮,而目前檢驗這些可疑重金屬的儀器與技術皆需耗費大量金錢與時間,因此研發出簡便快速的偵測工具極為迫切。本研究目的是利用基因轉殖的大腸桿菌,偵測出中草藥內的重金屬。 實驗結果顯示,利用含有銅離子基因轉殖的大腸桿菌,偵測7種常見的中藥材浸膏,除了黃岑之外,其他6種中藥材內可偵測到銅離子,並且具有定量的螢光表現。其中,研究發現由於黃岑本身會有吸附銅離子的現象,因此利用螯合劑EDTA來解決此問題。結果顯示,螯合劑不會影響大腸桿菌的正常代謝,但能成功地將銅離子搶出並誘導細菌產生螢光。最後利用螢光顯微鏡觀察,發現深色的中藥並不會影響大腸桿菌的螢光表現。 未來期望可將本研究初步成果,做更進一步的研究,除了能合成更多不同基因的大腸桿菌,以偵測不同種類的重金屬外,還製成便宜且方便使用的重金屬生物感測器產品,方便民眾檢驗手中的中草藥材,確保所使用的中草藥之安全性。

魔環

假設G為簡單圖,令V(G)、E(G)分別為G的頂點與邊所形成的集合,|V(G)|與|E(G)|分別代表G的頂點集合與邊集合的元素個數。若u, v∈V(G)且u, v有邊相連,則將此邊記為uv∈E(G)。對於給定的填單圖G,若存在函數f: V(G)∪E(G)→{1, 2, 3,…, m},其中m=|V(G)|+|E(G)|且函數f滿足下列兩個條件: (1)f為1-1且映成函數: (2)對於每個邊uv∈E(G),f(u)+f(v)+f(uv)恆為定值T, 則稱函數f為圖G的一個『魔函數』,G為一個具有『魔和』為T的『魔圖』。 在此次研究中,我們證明了下列的結果: 1.任意圈Cn為具有魔和[(5n+4)/2]或[(7n+3)/2]的魔圖; 2.長度為奇數n的圈Cn,其中n≠5,為具有魔和(5n+5)/2的魔圖; 3.長度為n=4t+2(t≧1)的偶圈Cn,為具有魔和(5n+6)/2的魔圖; 4.長度為奇數n的圈Cn外加兩個相鄰的懸掛邊所成為的圖為一個魔圖; 5.三個具有共同端點的n-路徑所形成的圖為一個魔圖。

動物大"關"園──探討與推廣特定限制下的組合問題

將1, 2,…, n依序排成直線,任意取出K個數,取法數即為Ckn,但如果取出的K個數有限制,那問題就會有很多的變化。我們最先探討的是不含定距元素的直線與圓排列的組合問題,先從K中無任兩數相鄰,再將問題一般化成使得K中無任兩數之間隔為m。我們用分割的方法代替多數前人所採用的複雜的遞迴關係,求出取法數。 接著,我們推廣取法的限制,運用排列組合、排容原理、以及生成函數等做法,深入的探討各式各樣的組合數。

高熵合金Alx CoCrFeNi (x = 0 - 0.4), Al0.5CrFeMnNi, CoCrFeNiMn 和FeCrNi近常數電阻率之研究

二元合金的電阻率大小取決於合金的有序度的大小,當「無序相」出現時,合金在等莫耳比例混和會有最高電阻率,以CuxAu1-x為例大約為7倍,但是如果「有序相」出現時,例如混和比例為25%(Cu3Au)及50%(CuAu)會出現電阻率大幅度下降現象,甚至接近純金屬元素之電阻率,因此我們猜想如果合金由三元到五元等莫耳比例混和,預期可能會出現類似結果,查文獻後才知道有一種合金叫做高熵合金(五元以上合金)。然而研究結果令人驚訝,我們觀察到極高的電阻率產生,大約為混合法則所得的21倍,以及異常小的電阻率溫度效應,經由XRD探測發現多元合金都有無序相出現,然而在300 K到673 K範圍內電阻率卻接近定值,實驗結果呈現殘留85%的電阻率,表示高熵合金的晶格內有高濃度的本質缺陷(Intrinsic defect)。

Creating a Portable Optical Sectioning Microscope for Smartphones with Three Dimensional Viewing Function

本作品首先證明了HiLo應用在散射光影像的可行性。目前看到有關HiLo的論文都只有提及收集螢光訊號,沒有看到有用在散射光訊號的收集上。本實驗透過架設自製原型機,證明HiLo的原理也能夠應用在散射光上,大幅提升HiLo光切片的深度與廣度。再者,本作品將自行撰寫之App結合雲端運算。再經過驗證後確認處理出來的影像是正確的影像。不僅加速影像處理流程,而且使用者只需攜帶手機便可立即看到處理出來的成果。接著,利用3D列表機自製具有光切片功能的手機顯微鏡實體。將原型機微小化並與日常生活常見的手機結合,讓使用者方便使用的同時也實現經濟便利性。最後,實現影像立體化,利用光切片的影像能使得原本平面的2D影像,可以呈現3D的立體化影像。