Extracting Water from Humid Air Using Solar Energy in Humid Areas
The study aims to evaluate the technique of extracting water from humid air using solar energy through greenhouses in local areas. This technique is believed to provide limited amount of water in areas where potable water is not accessible or abundant. To solve this problem a pyramid-shaped device was designed, it is made of glass panels ad equipped with glass doors, fans operated by solar energy, and multiple shelves covered with fabric to act as Absorbent Calcium Chloride (CaCl2) with a 30% concentration. The doors are open during the night for absorption and closed during the day for energy-generating. Humidity, temperature, and atmospheric pressure are measured every two hours. The amount of water extracted in this area in one full day was around 3.0 liters a day for every square meter. Perhaps the limited amount of water is due to low level of humidity in the area: an average of 50% and temperature of F10 Celsius at night. However, the device itself is independent, does not need power sources, water sources, or infrastructure, can be installed in various places depending on humidity level as well as having the possibility of increasing number or size of device. This makes the device a promising, alternative and environmental friendly solution to produce water. Cost-effective and lighter material can be used to make the device, which will produce an easy-to-use and affordable devices. It is an area in need for further research to improve and further develop it.
Green Wastewater Treatment: Using Graphene Oxide produced from Date Pits to Degrade Organic Dyes via Novel Microwave Technique
Water treatment is considered as one of the top research priorities in Saudi Arabia. It has been reported by World Health Organization that, 50,000 people die every day from diseases caused by contaminated water. This research attempts to degrade organic pollutants present in wastewater by using Graphene Oxide synthesized from Saudi natural source. Physical activation of date pits was carried out by carbonizing the samples at different temperatures to produce active carbon. Hammer’s method was employed for the purpose of Graphene Oxide production. The resulted Graphene Oxide has been characterized using FT-Raman, XRD and SEM techniques. Methylene Blue (MB) dye was used as a model organic pollutants to examine the ability of Graphene with the aid of a microwave-system to remove such pollutants. A modified domestic MS furnace with a variable power was used to supply microwave energy. The MB solution 2.5x10-6M was mixed with 0.1gm of Graphene Oxide. The applied microwave power was ranged between 100 to 700 W and the time was set between 0 to 12 minutes. The samples were centrifuged and then filtered through a millipore filter to remove the Graphene Oxide dispersed particles. It is found that, 98% of the initial concentration of MB is removed effectively within 12 minutes under microwave power of 500 W. Chemical oxygen demand is shifted from 450 to 87 mg/L while biological oxygen demand was decreased from 270 to 12.8 mg/L which indicating the degradation of organic constituents. This method can be used for water purification from organic pollutants.