全國中小學科展

2017年

淘氣精靈與IOD關聯性之探討

前人研究發現聖嬰南方震盪(El Niño–Southern Oscillation, ENSO)和淘氣精靈(Elves)兩者間有顯著關係,顯示淘氣精靈的變化受太平洋上ENSO影響,因此我們想探討淘氣精靈與印度洋震盪(Indian Ocean Dipole, IOD)間是否也存在相似的關聯性。一般以DMI(Dipole Mode Index)代表IOD的發生情形,研究中我們挑出2005年6月2015年11月IOD正負事件時的海溫、雨量、閃電及淘氣精靈進行比較。研究結果顯示淘氣精靈在印度洋上也有震盪的現象,且其趨勢與海溫相同,再將其與雨量變化做比較後,我們推論IOD造成的海溫變化影響了大氣,進一步影響淘氣精靈的發生。

利用混沌系統偵測植物覺知人體之反應

本研究證明用手觸摸植物或土壤時,會造成處於混沌狀態的蔡氏電路發生電位相圖的改變,經由微調並聯在模擬線路電源端的可變電容來比對相變過程,可以測量到非常微小的等效電容變化量。不同於傳統透過改變電阻來實現混沌行為的方法,證實本研究假設確實存在且具應用價值。 我們透過改變電極接點、電路初始狀態、人體靠近或觸摸不同部位等方式,探討兩種植物因微擾所產生的相變。結果發現微擾植物與其棲地時會產生「混沌制抑」的現象,整體系統的電容變動範圍界於0到100pF之間。更重要的是,本方法還可以偵測到微擾遠端植物時經根系及土壤同步產生的電容變化訊號,這是一般電容計所感測不到的。 利用混沌行為的特性,可以應用於偵測與分析生物體或宇宙間微弱且複雜的訊號,不需經由訊號轉換或放大等的處理程序,是本研究的重大發現,未來極具發展潛力。

Migration Data-Driven Mathematical Model for New City Growth

The growth of a city and the population movement has many correlations. However, the complex interaction causes difficulties in developing a mathematical model needed for analyzing the growth factor of a city and the movement factor of population. The model involving traditional equations cannot explain many phenomenon. The newly introduced data-science suggests possibilities to overcome these difficulties. Particularly, the abundant amount of accumulated data proposes a new solution for the problem we have. Throughout these steps, data-utilizing methodology, such as machine learning for artificial intelligence, are researched and developed with attention. In this research, data about accumulated for previous population movement and city growth are collected, and a mathematical science model based on data is developed to explain population movement and city growth by utilizing data analyzing methods such as machine learning. Especially, artificial neural network and stratified advance learning(deep learning) proves possibilities in solving many problems. This research aims to construct an artificial neural network appropriate for population movement and consequently use it in developing population movement model. Using this model, growth of many existing cities can be explained and furthermore, examining the population movement factor of a city and social factor necessary for city growth become possible. This model is expected to become the tool for resolving overpopulation and predicting and deciding factors needed for a new future city. In spite of decreasing population, it is still important to develop a model for population movement that well explains city growth and environment change.

Understanding the Modern Diagnoses of Protein C Deficiency "Pcd" with Unknown Gene Plays a Critical Role in the Inherited Thrombophilia

Protein C deficiency (PCD) is found in 1 out of 200 to 500 persons in the general global population which is also one of the common conditions of Inherited thrombophilia, it’s characterized by an increased tendency of blood to clot in human blood vessels. It is caused by several factors including mutations in the genes involved in thrombin binding, protein c activation and numerous clotting factors. This includes F5 (Factor 5 Leiden) gene on chromosome 1q24.2, F7 (Prothrombin) gene on chromosome 13q34, SERPINC1 (serpin peptidase inhibitor C) on chromosome 1q25.2, SERPIND1 (serpin peptidase inhibitor D) on chromosome 22q11.21, HRG (Histidine Rich Glycoprotein) on chromosome 3q27.3, PLAT (Plasminogen Activator) on chromosome 8q11.21 and THBD (Thrombomodulin) gene on chromosome 20p11.21. In the current study, a three Saudi families with inherited thrombophilia has been recruited to identify the underlying cause of this special condition. Whole exome sequencing, targeting all coding exons of the human genome, was performed using Illumina Nextera library preparation kits followed by paired-end sequencing on Illumina NextSeq500 instrument. Reads quality control was performed and reads were aligned to the reference genome using BWA software. Variants calling and annotation was performed using GATK. All known genes involved in causing inherited thrombophilia All known genes involved in causing PCD were excluded by whole exome sequencing. The genes that were previously reported to be involved in inherited thrombophilia were checked for any causative variant. No mutation has been identified in known genes. identifying a novel gene underlying PCD. The Result of this study will hopefully pave the way to better understanding the disease pathophysiology and help in developing DNA based diagnosis, carrier screening and somatic gene therapy.

Construction of an Emergency Portable Dynamo Mobile Phone Charging Station by Means of a Hand-Crank Gear Mechanism/ Solar Panels

The researchers aim to construct an emergency mobile phone charging station that runs on renewable energy and will serve as a cost-efficient alternative to more traditional power banks. Circuit components include a 20V / 6W solar panel supplemented by a hand-crank gear mechanism integrated with a 6V / 1A lead-acid battery, a usb output and an adjustable switch-mode power supply (SMPS) to convert excess voltage into current. Initial voltage and current outputs were measured under varying resistances. It was determined that the set-up satisfied the minimum voltage and current requirement for charging a mobile phone (5V / 1A). A subsequent phone charging test was executed using a Samsung Galaxy J2 (3.85V Li-ion battery 7.70W, Charge Voltage: 4.4V / 2000mAh) wherein it charged on an average of 0.277% per minute for the solar panel and an average of 0.263% per minute for the hand crank gear mechanism. A Mann-Whitney U statistical test was conducted to determine if the charging rate of the charging station had a significant difference from a commercially available power bank’s. The calculated UA: (4) from the test was below the lower limit and the UB: (217) was above the upper limit which indicated that there was a significant difference between the charging rates. While the efficiency was lower than the commercial power bank’s, it can still be used as an alternative charging method especially during emergencies and disasters.

SeedBot: Low-Cost Seeding Robot for Agricultural Applications

This paper presents a semi-autonomous seeding robot which is based on both electrical and mechanical platforms that perform advance agriculture process. SeedBot composed of four components: drilling mechanism, body of robot, seed container and paving mechanism. Other than those components the sensor system and the control system are also discussed. The aim of this study is designing and building a low-cost robotic system to automate and optimize process during farming especially for personal usage. This study demonstrates that semi-autonomous farming has crucial advantages over conventional farming. In addition to that, SeedBot provides safer, requires less manpower and precise farming than usual methods that we have so far.

公益是否有價?── 論消費者背景變項與公益商品之關聯

消費者對於公益商品的訂價看法為何?利他行為會不會有價差?本研究採取隨機分派之問卷研究法,調查板橋車站內受試者所認為的合理公益餅乾售價。問卷分為兩個模組,分別為公益餅乾與非公益餅乾,消費者填答自己所認為的合理價格,並同時填寫性別、年齡、教育程度等等基本資料。 研究者將600份問卷排除遺漏值後,以584份數據資料進行迴歸分析。分析結果指出,年齡介於21到30歲之間的青年,最不願意為公益理念付出金錢,同時,教育程度越高以及感情狀態處於單身者也不願意為公益理念付出價差,而整體來說,受試者公益與非公益模組間的價差大約為平均價格的百分之十。研究者對此四項主要發現進行推論與探討,並期望日後有更多相關方面的研究。

利用星團內短週期變星性質與星團運動狀態對疏散星團的性質探討——以英仙座雙星團為例

本研究主要目的在於利用現有的天文資料庫搜集星團成員星,並探討疏散星團中短週期變星的類型與空間分佈,以及星團在銀河系中的運動狀態,希望能對疏散星團的演化有更進一步的瞭解。英仙座雙星團在天空中的投影很靠近,以往文獻認為此雙星團可能相互影響,因此我以此天體當研究目標。除了線上天文資料庫檢索結果可以用來分析星團成員及基本物理參數,我還利用青藏天文台來取得觀測資料以填補研究中變星數據的不足。利用2MASS測光數據及蓋亞巡天自行數據,此雙星團我挑選出共約80個成員星,另外我分析了51顆變星,其中有17顆星是經由本次觀測得到的新週期。根據該天體的自行與徑向速度,其運動狀態是以一快一慢的速度朝向銀心運動,並皆以銀心為中心相同方向旋轉,且在垂直銀盤方向同時向下遠離銀盤。

行動工具鼠

滑鼠的問世是電腦史上的重大發展,其關鍵設計是以編解碼技術與影像辨識技術,來判斷滑鼠的移動與方向。本作品「行動工具鼠」的最初設計構想是利用滑鼠滾輪滾動的編碼機構與技術,應用圓周運動相對於距離移動的概念,再將滑鼠滾輪的圓周長,乘以滑鼠滾輪轉動圈數,即可得知滾動的距離;若再以單位時間,除以當下所移動的距離,即可得知即時的移動速度。作品更新版,第二代的設計策略,是利用滑鼠內光學鏡頭IC,以非接觸的方式來偵測滑鼠移動的距離。目前最新的設計,是以無線滑鼠,接上手持式行動裝置,搭配自行設計的APP程式,以相對滑鼠移動的概念,來偵測滑鼠的移動方向,以及滑鼠移動軌跡的座標變化量,即可得知滑鼠實際的移動的距離。以此設計與應用,可以完全取代市售測距輪的所有功能,成為日常生活中便利且實用的好工具。

NoDistort: Drawing Distortion Recovery System for Shaky Screens

在這個智慧型裝置普及的時代,觸控螢幕已經深入人們的生活。隨著手寫輸入法、滑行輸入法等筆跡輸入系統的完善,其也成為人們與裝置互動最重要的工具,卻也常因為搖晃造成輸入的筆跡變形。為了改善人們在不穩定環境下的輸入體驗,本研究提出了“筆跡變形修正系統”。 通過結合內置感應器的資訊,系統估計裝置的運動軌跡,並以提出的屏幕-手指互動模型恢復失真的筆跡。 研究中使用了一種不需要額外儀器的校準方法校正感應器誤差,再套用本研究所開發之變形修正演算法,成功在生活中恢復失真筆跡並證明了其有效性及必要性。經過數代的改進與實驗參數優化,修正效果已大幅提升。