Understanding the Modern Diagnoses of Protein C Deficiency "Pcd" with Unknown Gene Plays a Critical Role in the Inherited Thrombophilia
Protein C deficiency (PCD) is found in 1 out of 200 to 500 persons in the general global population which is also one of the common conditions of Inherited thrombophilia, it’s characterized by an increased tendency of blood to clot in human blood vessels. It is caused by several factors including mutations in the genes involved in thrombin binding, protein c activation and numerous clotting factors. This includes F5 (Factor 5 Leiden) gene on chromosome 1q24.2, F7 (Prothrombin) gene on chromosome 13q34, SERPINC1 (serpin peptidase inhibitor C) on chromosome 1q25.2, SERPIND1 (serpin peptidase inhibitor D) on chromosome 22q11.21, HRG (Histidine Rich Glycoprotein) on chromosome 3q27.3, PLAT (Plasminogen Activator) on chromosome 8q11.21 and THBD (Thrombomodulin) gene on chromosome 20p11.21. In the current study, a three Saudi families with inherited thrombophilia has been recruited to identify the underlying cause of this special condition. Whole exome sequencing, targeting all coding exons of the human genome, was performed using Illumina Nextera library preparation kits followed by paired-end sequencing on Illumina NextSeq500 instrument. Reads quality control was performed and reads were aligned to the reference genome using BWA software. Variants calling and annotation was performed using GATK. All known genes involved in causing inherited thrombophilia All known genes involved in causing PCD were excluded by whole exome sequencing. The genes that were previously reported to be involved in inherited thrombophilia were checked for any causative variant. No mutation has been identified in known genes. identifying a novel gene underlying PCD. The Result of this study will hopefully pave the way to better understanding the disease pathophysiology and help in developing DNA based diagnosis, carrier screening and somatic gene therapy.
SeedBot: Low-Cost Seeding Robot for Agricultural Applications
This paper presents a semi-autonomous seeding robot which is based on both electrical and mechanical platforms that perform advance agriculture process. SeedBot composed of four components: drilling mechanism, body of robot, seed container and paving mechanism. Other than those components the sensor system and the control system are also discussed. The aim of this study is designing and building a low-cost robotic system to automate and optimize process during farming especially for personal usage. This study demonstrates that semi-autonomous farming has crucial advantages over conventional farming. In addition to that, SeedBot provides safer, requires less manpower and precise farming than usual methods that we have so far.
Construction of an Emergency Portable Dynamo Mobile Phone Charging Station by Means of a Hand-Crank Gear Mechanism/ Solar Panels
The researchers aim to construct an emergency mobile phone charging station that runs on renewable energy and will serve as a cost-efficient alternative to more traditional power banks. Circuit components include a 20V / 6W solar panel supplemented by a hand-crank gear mechanism integrated with a 6V / 1A lead-acid battery, a usb output and an adjustable switch-mode power supply (SMPS) to convert excess voltage into current. Initial voltage and current outputs were measured under varying resistances. It was determined that the set-up satisfied the minimum voltage and current requirement for charging a mobile phone (5V / 1A). A subsequent phone charging test was executed using a Samsung Galaxy J2 (3.85V Li-ion battery 7.70W, Charge Voltage: 4.4V / 2000mAh) wherein it charged on an average of 0.277% per minute for the solar panel and an average of 0.263% per minute for the hand crank gear mechanism. A Mann-Whitney U statistical test was conducted to determine if the charging rate of the charging station had a significant difference from a commercially available power bank’s. The calculated UA: (4) from the test was below the lower limit and the UB: (217) was above the upper limit which indicated that there was a significant difference between the charging rates. While the efficiency was lower than the commercial power bank’s, it can still be used as an alternative charging method especially during emergencies and disasters.