Geographic Belts for Hurricane Landfall Location Prediction
When predicting a hurricane’s landfall location, small improvements in accuracy result in large savings of lives, property, and money. The project’s purpose was to apply a breakthrough method that can predict the geographic location of a hurricane’s landfall with high accuracy. Researchers have known for a long time that there are strong correlations between a hurricane’s landfall location and the geographic regions its track passes through. However, no methods have been developed to mathematically and explicitly describe these correlations. Consequently, the correlations can only serve to meteorologists as vague guidelines for their guestimates and are not usable in making practical forecasts. By studying the correlations and performing numerical optimization on historical hurricane data, this research discovered a set of geographic belt regions in the Gulf of Mexico that can be used as landfall location predictors. When a hurricane passes through any one of these belt lines, a prediction can be made by extending the hurricane’s moving direction vector towards land – the intersection point of this extension line with the coastline is the predicted landfall location. This prediction method is simple and straightforward. It only uses basic measurements from meteorological satellites: the hurricane’s real-time locations and moving directions. In conclusion, when compared to existing methods, the predictive belt method (PBM) created in this research provides a landfall location forecast with higher accuracy. Verification with historical hurricane data demonstrated that the PBM’s average error is less than 50% of the National Hurricane Center models’ error.
Biodegrable Roof
It became necessary to implement a project for the use of vegetable waste generated in the process of handling plantain cultivation, harvest and postharvest, since in Mexico at harvest large quantities of vegetable waste is produced, since only the fruit is used wasting the Pseudostem with leaves and spine. Based on this information, you can take advantage of banana fiber as raw materials in the manufacture of biodegradable sheets and support options that are feasible and possible to make alternative. This is an inexpensive process, also friendly with the environment, so that thousands of banana plants that bear fruit after they become sterile and are discarded without realizing their Pseudostem.
探討抗憂鬱症藥物phenelzine對於發生在小鼠巨噬細胞中的細胞凋亡所產生的保護作用及機制
之前有研究指出,使用一些單胺氧化酶(monoamine oxidase, MAO)的抑制劑如pargyline和clorgyline,皆可以保護serum starvation所導致的細胞凋亡,表示MAO可能在細胞凋亡的路徑中扮演重要的角色。 本研究著重於一個臨床上被拿來當抗憂鬱症藥物的MAO抑制劑苯乙肼(phenelzine, PZE)對於沿著腫瘤壞死因子-α (tumor necrosis factor-α, TNF-α)途徑而產生細胞凋亡的小鼠骨髓巨噬細胞(bone marrow-derived macrophages, BMDM)所產生的保護作用。 本研究的結果顯示PZE的確可以保護循TNF-α途徑死亡的細胞,同時使活性氧化物質(reactive oxygen species, ROS)的量下降。我們推論造成此現象的原因是PZE藉由抑制MAO,使得ROS的量下降,進而保護細胞。
Extracting Water from Humid Air Using Solar Energy in Humid Areas
The study aims to evaluate the technique of extracting water from humid air using solar energy through greenhouses in local areas. This technique is believed to provide limited amount of water in areas where potable water is not accessible or abundant. To solve this problem a pyramid-shaped device was designed, it is made of glass panels ad equipped with glass doors, fans operated by solar energy, and multiple shelves covered with fabric to act as Absorbent Calcium Chloride (CaCl2) with a 30% concentration. The doors are open during the night for absorption and closed during the day for energy-generating. Humidity, temperature, and atmospheric pressure are measured every two hours. The amount of water extracted in this area in one full day was around 3.0 liters a day for every square meter. Perhaps the limited amount of water is due to low level of humidity in the area: an average of 50% and temperature of F10 Celsius at night. However, the device itself is independent, does not need power sources, water sources, or infrastructure, can be installed in various places depending on humidity level as well as having the possibility of increasing number or size of device. This makes the device a promising, alternative and environmental friendly solution to produce water. Cost-effective and lighter material can be used to make the device, which will produce an easy-to-use and affordable devices. It is an area in need for further research to improve and further develop it.