全國中小學科展

二等獎

ERF參與FT調節植物活性氧的誘導開花

輕微乾旱會造成植物提前開花。實驗結果發現20 mM過氧化氫能有效促進阿拉伯芥開花。晚開花ft轉殖株噴灑過氧化氫後,沒有促進植物開花,因此FT可能參與過氧化氫控制開花。我們利用即時定量PCR方法證實在過氧化氫狀態下,FT及其下游基因基因會受到誘導而表現。以FT啟動子驅動螢光基因,發現FT確實會受到過氧化氫的誘導而啟動。以次世代定序得知過氧化氫處理後,得知ERF109受到抑制。利用FT啟動子序列刪除及ERF109以基因槍實驗,得知低濃度活性氧可以充當輕微逆境下的訊號,抑制ERF109表現再誘導FT啟動,促使FT基因及其下游開花基因表現,使植物提早開花。

新穎「螢光素酶—螢光奈米鑽石」細胞化驗機制標記於人類間葉幹細胞之藥物篩選應用與研究

本實驗提出了一個新的細胞化驗平台:結合螢光素酶和螢光奈米鑽石(Luciferase-Fluorescent Nanodiamond;Luc-FND)用來高靈敏檢測極少數量的細胞,克服人體間葉幹細胞(Mesenchymal Stem Cell; MSC)的數量稀少以及來源取得困難的問題。本實驗開發的Luc-FND assay,不同於以往的Luciferase assay,Luc-FND assay利用了FND當奈米載體(約為100nm),將裹上的螢光素酶送入細胞後監測細胞內冷光強度,用以得知細胞胞吞作用的多寡,進一步推算出細胞的存活率。本實驗將此機制應用於被不同濃度的化療用藥阿黴素(Doxorubicin;Dox)處理過的間葉幹細胞。結果顯示Luc-FND assay能夠高靈敏的檢測Dox對於間葉幹細胞的毒性,僅用1 ×103個細胞就能測出低至0.3125M的Dox劑量。本研究結果顯示,Luc-FND複合物是一種高效能的生醫工具,可將生物發光蛋白均質傳遞到間葉幹細胞中,提供了一種檢測和驗證治療成果的新方法。

Algae Meets Fungi: Microalgae-Fungi Co-Pelletization for Biofuel Production

Microalgae-fungi biofuel has significantly less CO2 emissions than fossil fuels, making it much more environmentally friendly. As well, unlike traditional biofuel, microalgae-fungi does not require large masses of agricultural land for production. Thus, microalgae-fungi is an optimal option for biofuel production. This is a cost-effective renewable energy source that can be used in place of regular gas in cars and other means of transportation. By determining the most effective fungi for biofuel production, the threat of the impending environmental damage from pollution can be diminished. This novel experiment determines which fungi: Aspergillus niger, Rhizopus stolonifer or Saccharomyces cerevisiae, is the most effective bioflocculant in the microalgae-fungi co-pelletization process for biofuel production. We hypothesize that when paired with the microalgae Chlorella vulgaris, Rhizopus stolonifer will be the most effective. It has a high lipid content which could enhance the overall production of biofuel. Furthermore, its negative charge will aid with attracting and neutralizing the C. vulgaris colloidal particles resulting in an easier and more efficient removal of microalgae particles. Through the process of bioflocculation, pelletization, esterification and transesterification, the most effective fungi paired with C. vulgaris was determined. This experiment was carried out thoroughly and precisely resulting in a cost-effective solution for the world's current pollution crisis.

Co-evolution of transcription factors and their binding sites in DNA

The synthesis of RNA using DNA (transcription) can be regulated by special proteins - transcription factors (TF) by binding to specific DNA regions - binding sites (BSTF). The purpose of the project is building a phylogenetic tree of orthologous groups of the each studying TF subfamilies, compare it with the tree of the corresponding BSTF motifs belonging to one orthologous group, find some common parts.

利用深度學習預測中草藥的藥性功能與毒性

近年來中醫在慢性病的治療上已獲得很大的進展,許多中草藥的功能與特性皆是利用人體實驗來找出其效用,中藥內含的成分極為複雜,其功能與毒性測試常依賴於過去經驗醫學,許多中藥仍有待探討與實證,其對人體細胞和基因的影響仍不如西醫。因此目前國內外紛紛開始建置中草藥、成分、化合物相關數據庫供查詢,然而如何讓中醫的功能與毒性科學化變得是很重要的議題。本研究利用化學結構的數據分析來探討中藥成分與人體臟器與毒性的關係性。我們採用深度學習模型以中草藥的化學性質作為輸入,透過化學結構的圖像傳播,來預測中草藥相對應之臟器有效功能與毒性預測,希望透過本研究可以提供中藥對健康影響的依據並作為未來輔助中醫的工具,讓人們可更加了解食用中藥對人體可能有的正面與負面影響。

基於睡眠時期大腦活動之概念的類神經網路優化法研究

深度學習透過迭代的訓練,如沿著梯度反方向更新權重的梯度下降法,旨在找出損失函數建構出的多維函數圖形中,其全局最小解的變數組合。我們受到在睡眠中的快速動眼期啟發,此時期腦中的高頻率γ波可以強化學習效果。本研究模擬此現象,提出一使原損失函數擁有自適應的增幅功能的演算法(稱之為REM方法),且其中的超參數能夠根據其應用調整。 本研究將REM方法應用於三種經典的優化法,並且以五種異質的資料集測試。實驗結果指出,在搭配隨機梯度下降法(SGD)與自適應學習率優化法(Adagrad)時,REM有顯著的優化效果。REM方法不僅能大幅加速訓練進程,亦能避免特定的訓練問題。

Multiple Time-step Predictive Models for Hurricanes in the North Atlantic Basin Based on Machine Learning Algorithms

The cost of damage caused by hurricanes in 2017 is estimated to be over 200 billion dollars. Quick and accurate prediction of the path of a hurricane and its strength would be very valuable in alleviating these losses. Machine learning based prediction models, in contrast to models based on physics, have been developed successfully in many problem domains. A machine learning system infers the modeling function from a training dataset. This project developed machine learning based prediction models to forecast the path and strength of hurricanes in the North Atlantic basin. Feature analysis was performed on the HURDAT2 dataset, which contains paths and strengths of past hurricanes. Artificial Neural Networks (ANNs) and Generalized Linear Model (GLM) approaches such as Tikhonov regularization were investigated to develop nine hurricane prediction models. Prediction accuracy of these models was compared using a testing dataset, disjoint from the training dataset. The coefficient of determination and the mean squared error were used as performance metrics. Post-processing metrics, such as geodesic error in path prediction and the mean wind speed error, were also used to compare different models. TLS linear regression model performed the best of out the nine models for one and two time steps, while the ANNs made more accurate predictions for longer periods. All models predicted location and strength with greater than .95 coefficient of determination for up to two days. My models predicted hurricane path in under a second with accuracy comparable to that of current models.

利用多元實驗技術從川七莖體生長素的分子結構及成分探討碰觸引發的非對稱性生長

本研究以X光繞射、吸收光譜、拉曼散射、光學顯微影像、氣相層析質譜儀、高效液相層析儀等跨領域多元實驗技術,探討川七生長素由頂芽向植物體輸送過程中生長素活性變化的行為,以及向觸性(thigmotropism)對生長素分子組態的影響。Indole-3-acetic acid (IAA)是植物生長素中最主要,而且是自然生長中含量最豐富的分子。不論是由川七莖萃取的IAA粉末或活體川七莖的實驗結果,我們發現:(1)川七捲曲莖中活性IAA分子在非接觸面的含量明顯高於接觸面者約10%之多;(2)IAA分子在莖部運輸時發生串接成整齊排列的現象,非接觸面IAA的整齊串接個數為接觸面IAA的2.4倍之多;(3)活性IAA由頂芽運輸到捲曲徑非接觸面時僅剩2/3具有活性,而運輸到接觸面時則僅剩1/2具有活性。另外,我們的研究結果也證實了川七的無性繁殖構造-零餘子,其粉末有顯著的抑菌效果。

洞穴十字路-揭開東帝汶約萬年前的氣候秘辛

以東帝汶Monkey cave的MC2石筍進行鑽孔,拋光,得到各段的石筍粉末後,以鈾釷定年法得知生成年代,並得出石筍δ18O數值。 東帝汶Monkey cave的MC2石筍有81個鑽孔點,δ18O值介於-4.237 ‰~-2.452 ‰之間,δ18O氧同位素的變動範圍約在1.8 ‰之間。 MC2石筍生長時期13542~10740年前,即更新世晚期。 東帝汶MC2石筍在早期δ18O較晚期數值較重,而到後期較接近10740年前則是δ18O有一直變輕的趨勢,由此可看出早期雨量較晚期為少,且雨量呈現增加的趨勢,代表溫度上升,上升氣流較強,雨量較多所致。 東帝汶MC2石筍和約萬年前中國南京葫蘆洞石筍的δ18O值比較,呈現相反的趨勢,與新仙女木事件發生時(12800~11500年前),大西洋北部大量融冰注入,而造成暖流無法北上,造成低緯度溫度較高,雨量較多的有關。

新種三尾扁蟲光行為與共生藻的互利共生

三尾扁蟲(Convolutriloba)至今尚無野生棲地的觀察記錄,本研究自水族缸裡採集的扁蟲經外型描述、無性生殖以及DNA親緣關係等比對結果,證明是台灣特有的新種。本研究首次於墾丁外海發現野生三尾扁蟲棲地,其多棲息於礁石洞口,與水族缸內散布情形大有不同,因此我們設計模擬棲地使其在黑暗與光照交替的環境下生存,確認扁蟲的自然分布乃是光避性(photophobia)與光聚性(photoaccumulation)彼此調節的結果。Shannon曾指出三尾扁蟲具有光避性與光聚性,卻未探討其原因。比較扁蟲以及其體內共生藻(Zoochlorellae)在不同色光下的生理現象,共生藻紅光下光反應效率高,而扁蟲在紅光下不具光避性;其他色光下共生藻光反應效率低,則扁蟲有明顯光避性。此項發現正說明了為何扁蟲會有光避性與光聚性行為,以及扁蟲野生棲息地位於礁石洞口的原因。