水分子自我組裝之機制探討
Up to this time we have spent almost three years in studying condensation and water droplets. Little could we have done as compared with the almighty nature. However we are rewarded by the nature as we gradually found the secrets about electro-magneto field and water droplets: The size of water droplets turn smaller upon electro-magneto field and grow more uniformly especially upon electric field. This experiment presented here is actually the diary of the growth of water droplets in condensation, upon magnetic field and electric field. Through convection, it discusses the self assembly patterns of water droplets and peep into the uniformity both of the size and the distribution mode of water droplets. In former basic experiment, we focus on temperature and the speed of water moisture; generally speaking, higher temperature speeds up the coalescence procedure but does not affects the nucleation size of water droplets in simple plain surroundings; while speed of moisture does affects the nucleation size. As we went farther, deep into convection and found magneto-electric force did play an important role in the self assembly mechanism of water droplets. The topic is mostly concerned as we are surrounded by magneto-electric waves in today’s world. This experiment anchors the first step in discovering the uniformity of water droplets in different environment, and providing insights into the self assembly mechanism of water droplets upon electro-magneto field with nano sizes. 這是一系列關於水蒸氣冷凝為極細微小水珠的實驗。其中可以分為兩大部分; 第一部分是基礎實驗。將水蒸氣導入至潔淨的介面上(蓋玻片),觀察冷凝水珠的結構。雖然看似簡單平常,但卻有令人驚奇的發現;不同溫度的水蒸氣,其冷凝最初始的細微顆粒之尺寸是相同的 !爾後隨著溫度的升高,堆疊速率也跟著上升;以致於最後一起呈現出來的水珠大小不一,尺寸不一。 第二部分是將水蒸氣導到磁場及靜電場上,觀察其冷凝結構。這部分的實驗推翻了一般「水分子是電中性在電磁場中不受影響?」的刻板觀念 !實驗所呈現出來的冷凝水珠,不但於附加磁場中尺寸縮小又不易長大,同時還有固定的自我組成模式( Slef-assembly pattern);而且也發現在磁場中的冷凝小水珠的尺寸比電場中的小,可是電場中的小水珠則表現出較大的均勻特質。
Microbial diversity in the Mediterranean hypersaline deep-sea lake Tyro
1. Purpose of the research Characterization of bacterial and viral diversity of brine Tyro using molecular methods of identification. 2. Procedures For bacteria: 1. Amplification or multiplication of 16S rRNA gene (one of the most conservative gene) by polymerase chain reaction (PCR). 2. Agarose gel electrophoresis and purification of PCR product 3. Ligation of purified PCR product into the vector pGEM-T 4. Transformation of plasmids containing an insert into competent cells E.coli XB1 5. Blue-white selection (we need white colonies, they contain the insert of interest) 6. Isolation of plasmids containing an insert of interest 7. Sequencing of inserts 8. Bioinformatics analysis: matching homologues from GeneBank database, construction of phylogenetic trees, statistical analysis. For viruses: The same methods were used for gp23 gene, which code a major head protein of T-even bacteriophages; to amplify gp23 gene a special set of primers was used, along with a standard cloning protocol described above. 3. Data 1) Two libraries of clones were obtained during analysis: lake Tyro (24 operational taxonomic units (OTUs), 10 classes) and sea water (6 OTUs, 2 classes of eubacteria). 2) The most abundant classes were: gamma-, delta-, epsilon- Proteobacteria, which is in agreement with previous reports about bacteria in brines of Mediterranean Sea. 3) The number of clones was not sufficient to obtain stable estimates of diversity, the analysis require additional data. 4) The diversity of bacteria was unexpectedly high in brine but not in the seawater, due to higher and more diverse ion composition. 5) Most of the detected bacteria in the deep-sea lake belonged to the previously undescribed (18,75%) bacteria or had unusual metabolism (43,75%). 4. Conclusions The analysis demonstrated unexpectedly high diversity of halophilic bacteria inhabiting Tyro lake. Most of bacteria presented in brine water had unique and uncommon characteristics based on information about its closest relatives. Therefore, the deep-sea hypersaline lakes of Mediterranean Sea have great potential for further investigations. Preliminary results of diversity of viruses of Tyro lake were obtained during analysis, more complete description is coming soon.
長方體內最少完全城堡數
我們試著尋找所需最小的城堡個數以看守整個a × b × c (a,b,c ? N) 的長方體。所謂城堡是一種棋子,當放置城堡的位置是(x, y, z) ,則(x, y,t)、(x,t, z)、(t, y, z) (t 是任何不超出邊界的正整數)是這個城堡可以看守的格子。我們用這些城堡來完全看守長方體,試著找出其最小值。在2005 年我們猜測了a = b = c 、a = b c 、a > b > c 的上界,而在2006 年時完成了a = b = c 、a = b c 的大部分情況的證明,少數不能解決的部份也提供了不錯的上界。目前我們在a = b = c 、a = b c 的情況幾乎完全解決,目前正在向a > b > c 的部份發展。A generalized searching method of finding the minimum number of castle which can oversee all over the rectangular box, defined as a × b× c (a,b,c ? N) , is presented. The castle here is defined as one kind of chess. The castle positioned as (x, y, z) can direct the lattice points of (x, y,t) 、(x,t, z) 、(t, y, z) (t is the positive integer and smaller than the box size). These castles we use here is to oversee the rectangular box and to help us to find the minimum number. In 2005, we got the upper bound of overseeing the rectangular box in the conditions of a = b = c、a = b c、a > b > c , while in 2006 we complete the proofs of the minimum number of castles based on the conditions of a = b = c 、a = b c . The further work we want to attain is to complete the case of a > b > c.
Carbon nanotubes as efficient nanosieve for controlled assembly of nanoparticles
In this work, techniques to explore the capabilities of multi-walled carbon nanotubes\r (MWNTs) in sorting nanoparticles (NPs) were presented. A droplet of a solution comprising of quantum dots (QDs) with various sizes was deposited on an aligned array of intertwined MWNTs. Photoluminescence (PL) and fluorescence microscopy (FM) revealed that MWNTs were effective nano-sieves that could effectively sort out QDs with a size difference of ~ 2.1 nm.\r Cadmium Selenide/Zinc Sulfide (CdSe/ZnS)core-shell QDs and Cadmium Sulfide (CdS) QDs were used to explore whether chemical properties of NPs affect the sieving capability of MWNTs. Further investigation on the effects of micro-patterning on the sieving ability of MWNTs was also carried out.PL and FM results suggested that micro-patterning could aid in separation of QDs and thus improve sieving capability of MWNTs. With the above findings, QDs emitting different colors as a result of size difference could efficiently be assembled onto the MWNTs en route to three-dimensional architectures with controlled assembly of NPs.\r Together with controlled laser power to remove desired amounts of QDs decorated MWNTs, a multi-colored display could be achieved. Further experiments were also carried out to determine the feasibility of introducing MWNTs as filters for NPs. Dilute solutions containing NPs such as gold colloid was run through these MWNTs filters by gravity. Field emission scanning electron microscope (FESEM) images of the samples showed that MWNTs were successful in trapping the nanoparticles. Explorations into the length dependent effect of using MWNTs as filters, suggested that 300μm MWNTs are better nano-sieves compared to 50μm MWNTs.