全國中小學科展

二等獎

咀嚼口香糖對於記憶力與情緒放鬆的影響

本研究採用受試者內實驗法進行設計,以2*2*2=3個因子(糖分*刺激口味*咀嚼時間),加上2次不同時間咀嚼運動與對照組,一共有11次實驗。每次實驗量測短期記憶與短期工作記憶共6種題項,並透過心律變異器、簡單的腦波偵測儀與問卷調查,瞭解咀嚼口香糖對於情緒放鬆的影響。 研究結果發現:咀嚼無糖口香糖對於數字廣度記憶有較佳的效果,反倒是咀嚼有糖薄荷口香糖時,則數字廣度記憶效果最差,甚至比單純咀嚼運動或對照組來得差。其次,在情緒放鬆上,受試者都認為咀嚼有糖薄荷口香糖,其糖分的味覺與薄荷的嗅覺有助於放鬆情緒,但透過心律變異器量測交感神經活性指數與副交感神經活性指數,反倒是增加緊張與焦慮的情緒。其次,從記憶力與心律變異結果得知-有糖分的口香糖會使得情緒較為緊繃與無法鬆懈,因此導致記憶力也跟著有降低的趨勢。但如果經過咀嚼15分鐘後,再進行記憶力量測時,其情緒較為輕鬆而記憶力也有所提升。 咀嚼口香糖對於記憶與情緒並沒有太大改變增加,因此,本研究建議如果真的有咀嚼口香糖習慣的人,可咀嚼15到20分鐘再進行相關工作,如此將有稍顯幫助工作績效。但咀嚼有糖分與刺激口味的口香糖,可能會造成反效果。

費瑪也瘋狂-平面上存在障礙時連接三定點的最佳網絡問題

在一個有障礙的平面上,給三個定點,我們探討連接此三點的最佳網絡。我們討論了諸如直線、射線、線段、圓、網格狀、三角形……等類的障礙,當網絡每穿越障礙一次,就必須付出代價,例如「拖延5 分鐘」。所以,設網絡穿越障礙的次數為y ,則網絡除了原本的總長度之外,還額外加入y 倍某固定數值的損耗。我們以費瑪點的各種性質及三角形不等式等方法為工具,就不同的穿越障礙次數綜合比較,而找出最佳網絡。在某些情況下,最佳網絡不是以費瑪點來連接三點,而是在障礙(如:直線)上找出符合某種與餘弦值相關特殊性質的點,以該點來連接三點,而此網絡可用GSP 軟體相當精確地作出。另外,我們也探討在考慮障礙造成損耗的情況下,兩點間的「實際距離」為何。 最後,我們考慮「混合障礙」問題。在此類問題中,除了前面所討論的障礙,還另加了如同「河流」的兩平行直線間區域之障礙,在這種障礙區域中,網絡的長度要乘以數倍來計算。我們發現,此類問題的最佳網絡也可用特定的正弦條件配合GSP 而相當精確地作出來。;Considering various kinds of obstacles in a plane, such as a line, a segment, a ray, a circle, a triangle or chessboard grids, which function like a red light, we research into the problem of finding the optimal network connecting three given points A, B, C in the plane amidst obstacles described above. Each time when the network crosses an obstacle, it will cause losses, such as five minute’s delay or a loss of one hundred dollars. Taking advantage of Fermat points, some basic inequalities concerning triangles and some special qualities about sine or cosine functions, we obtain the optimal networks in different situations. Besides, we consider what the “real distance” between two points is when there are obstacles in a plane. We also put another obstacle, including a line and a weighted region between two parallel lines, into consideration. In the region, like a river or a muddy ground in real life, the length of the network should be multiplied by a fixed time. Furthermore, we can use GSP to make the networks very accurately.

電解與磁場的秘密.

金屬離子在磁場中的流動速率會略有改變,尤其是在強磁場中時,其影響更是顯著,即 【MHD 磁流動效應】,造成整體電解液中離子的流動,此流動比擴散速率佔優勢。再利用「磁 矩」具有向量性質,探討不同金屬離子(Na+、K+、Fe3+、Al3+、Mg2+)及MnO4 -在磁場角度 相同但強度不同的情況下;及磁場角度不同但強度相同的情況下,對電解速率的影響。 經實驗發現有以下結論: 一、由法拉第電解第一定律出發,加以實驗數據分析,可推導出一關係式: 電解速率Rρ= k ×∫〈∣H 向量∣×∣cosθ∣〉×∣E 向量∣ (k 單位:g / C˙weber˙s) 二、電解效率隨價數增高而增快。 三、較強的電解質,其對磁場的感應也越大,如果就同一族而言,往 下其活性越強,對磁場的感應也越強。 The flowing rate of Metal ion changes slightly in magnetic field. This influence is especially remarkable while the magnetic force is very strong, that’s【MHD (magneto Hydrodynamic Effect ), which gives rise to ionic flowing all over the electrolyte. This flowing rate is superior to expanding rate. Further, basing on the magnetic torque ’s vector trait, this research studies how electrolysis velocity affects different metal ions (Na+、K+、Fe3+、Al3+、Mg2+) and MnO4 - under following situations: Some results are found through the experiment. 1. Begin with Farad Electrolysis First Law, and take the experimental analysis into account, then a relative formula comes out as bellow. Electrolysis Rate Rρ= k ×∫〈∣H∣×∣cosθ∣〉×∣E∣ (k:g / C˙weber˙s) 2. Electrolysis efficiency accelerates by the increasing price amount. 3. Active electrolytes get strong response to the magnetic field. For the same group, the more active the electrolytes are, the stronger it responds to magnetic filed.

七星映月--都市靜水生態系連接度之模擬研究

目的:1. 以地理資訊系統分析臺北市靜水生態系的分布狀況;2. 分析靜水生態系的連接度。過程和結果:我實地踏察了臺北市區的381 個地點,在其中187 處發現224 個靜水生態系,首次統整出臺北市區靜水生態系的現況資料。靜水生態系的平均密度為0.82 個/km2,其密度與人口密度成正比。以 GIS 軟體標定這些水池,發現它們成任意或叢生分布。再以 VisualBasic 程式語言設計程式,以預測移動能力不同的濕地生物在這些靜水生態系間移動的情形。結論:由程式模擬可知,能在所紀錄地點間自由移動的濕地生物種類很少,顯示都市化對靜水生態系的隔絕效應。In a city, still water ecosystems (ponds and lakes) are divided by buildings and roads, so they are not continuous in the space. I surveyed 381 sites in Taipei City and found 224 ponds and lakes at 187 sites. The density of still water ecosystems is 0.82 per square kilometer. The density of still water ecosystems is higher in areas where more people live. I use a geographical information system software to mark the locations of these ponds. Their distribution is either random or clumped. I use Visual Basic to design a program to predict how do wetland creatures move among these sites. My program tells that very few creatures can move freely, indicating still water ecosystems in this city are quite isolated.

轉譯在延長階段所做的調控

高中生物課本內對於轉譯機制所舉的例子,通常僅侷限於轉譯起始階段(initiation)所受的調控,例如色胺酸調控組。因此,我們想藉此研究更進一步探討:細胞在不同階段是否有調控轉譯的現象。我們利用冷光蛋白測定法(luciferase reporter assay)測出CPEB3的確對於轉譯有減緩的效果,並利用不同internal ribosome entry site(IRES)間接證明轉譯速率的變化主要是根據延長階段的不同而有所改變。另一方面,我們將多組CPEB3突變株進行交叉分析,找出cpeb3序列中兩百多個鹼基對的重要基因片段,並發現其為不連續的基因,且用Co-Immunoprecipitation(Co-IP)驗證我們的實驗結果。未來,我們將繼續探討在延長階段抑制的意義,以助於我們進一步了解細胞轉譯的過程。

假如我是正常的?!—再探渦流脫離是否可能為聖嬰發生動力

聖嬰現象為全球的共同話題之一,由於其發生會影響全球性氣候的改變,使原本乾旱處下起傾盆大雨,原本潮濕氣候的地區成了乾旱地區,導致生命、財產嚴重性損失,這也是引發本研究想站在不同科學領域角度來探就聖嬰現象的發生的原因。目前科學家大都以大氣觀點來說明聖嬰的成因:太平洋上因風向改變引起海水流向或動能變化,導致太平洋赤道地區及南美洲西側海面溫度的改變,而觸發聖嬰的發生。由於海水的熱容量比空氣大,因此我們想以海洋觀點來說明另一種可能觸動聖嬰發生的動力,在生活經驗裡,我們發現水流通過障礙物會在後方形成渦流,因此,當南極繞極環流通過德瑞克通道受到南美洲南端阻礙時,有可能在南美洲形成週期性渦流生成及脫離的現象。「這樣的渦流是否存在?」、「渦流脫離後在南美洲左右岸海面溫度、高度是否發生變化?」、「此動力是否進而觸發聖嬰現象?」,是本研究期待以新思惟解釋引發這個全球現象的另一可能動力。

Do SAT Problems Have Boiling Points?

The Boolean Satisfiability problem, called SAT for short, is the problem of determining if a set of constraints involving Boolean (True/False) variables can be simultaneously satisfied. SAT solvers have become an integral part in many computations that involve making choices subject to constraints, such as scheduling software, chip design, decision making for robots (and even Sudoku!). Given their practical applications, one question is when SAT problems become hard to solve. The problem difficulty depends on the constrainedness of the SAT instance, which is defined as the ratio of the number of constraints to the number of variables. Research in the early 90’s showed that SAT problems are easy to solve both when the constrainedness is low and when it is high, abruptly transitioning (“boiling over” ) from easy to hard in a very narrow region in the middle. My project is aimed at verifying this surprising finding. I wrote a basic SAT solver in Python and used it to solve a large number of randomly generated 3SAT problems with given level of constrainedness. My experimental results showed that the percentage of problems with satisfying assignment transitions sharply from 100% to 0% as constrainedness varies between 4 and 5. Right at this point, the time taken to solve the problems peaks sharply. Similar behavior also holds for 2SAT and 4SAT. Thus, SAT problems do seem to exhibit phase transition behavior; my experimental data supported my hypothesis.

Vison-把台北101 玩弄於電腦之中

創意發想:在學習三角函數的三角測量應用時,由於立體感並非十分容易在平面中呈現,使得解題過程並相當困難。我們希望能透過程式,實際模擬出所看到的樣子,將有利於解決這方面的問題。學習美術者也需要了解一點透視的立體概念,皆可以透過程式來模擬。作品特色:我們的精神主要在於以高中的數學及物理為基礎,來研究其中的方法。除了研究3D 繪圖之基本原理,並著重於如何以程式實作,以達到高繪圖效能。預期效果:1. 讓電腦繪出有立體感(近大遠小)的圖形。2. 可以由不同位置及角度觀察物體。3. 讓立體影像具有光及影的效果。“想像您坐了一部直升機從1 樓向上到達頂端,觀看101 大樓有何不同的景象?!”Motive :In learning the technique of triangulation, it is hard to show 3D coordinates on 2D graphics so that this kind of math problems is difficult to solve. We hope that we can simulate the 3D surroundings by programming to provide references in dealing the problems. In addition, painting learners also need the simulation to realize the concept of one-point perspective. Feature :1. We do all the research based on mathematics and physics techniques learned in high school. 2. We not only figure out the method to draw 3D pictures but put some emphasis on how to use programming to run the method. Objective: 1. Let the computer draw 3D pictures, that is, the object looks big when near and small when far. 2. Making it possible to observe the object from different positions and angles. 3. Making the 3D pictures with lighting and shading effect. “Imagine how the sight would change while you are taking a ride on a helicopter from the ground to the top of Taipei 101.”\r

能量環

Quantum Rings are defined to be polygons with sides all of the same unit length that are connected with a fixed positive or negative angle. In the research, the number of Quantum Rings corresponding to a given number of sides and a fixed angle will be discussed. Quantum Rings could be expressed by many sequences which would involve the theory of partitions and ways to eliminate the many to one nature of the sequences in order to evaluate the upper and lower bound. Besides estimating the upper and lower bound, a lot of the qualities of the Quantum Rings under certain circumstances will be mentioned.「能量環」為許多單位長度的線段以定角首尾相接,並且最後接回原點的多邊形。本研究將要探討對於給定邊長個數與相接角度的「能量環」的個數。「能量環」可以被表示成許多種數列的形式。在數列的運算中會牽涉到許多數字分割的理論與排列組合的排除重複以求得能量環個數的上下界。除了定量的求算出上下界以外,報告中也定性的歸納出許多給予特殊條件的能量環的性質。

不要給我好人卡─編號對應的研究