Exploring the Potential of Pachyrizus Erosus-Derived Calcium as an Affordable Nutritional Solution for Lactose Intolerance
An exploration of Pachyrhizus erosus as an option for plant-based milk in the 印尼n market for people with lactose intolerance. With its prevalence in tropical climates, Pachyrhizus erosus is an affordable crop in 印尼. Pachyrhizus erosus is a root vegetable containing a calcium content of 15.6 mg per cup (130g) in its unprocessed form, concentrated in its white flesh. Based on its affordability and calcium content, Pachyrhizus erosus can be transformed into a beverage product with nutritional qualities on par with existing plant-based milk, therefore being a solution for calcium sustenance that is more accessible due to its high capability to be locally grown in 印尼. However, this may be a partial case as Pachyrhizus erosus only thrives in regions with long warm seasons. In this research, three trials of Pachyrhizus erosus-based milk recipe have been conducted Trial 1 consists of a 1:1 ratio of Pachyrhizus erosus to water, Trial 2 consists of a 2:1 ratio of Pachyrhizus erosus to water, and Trial 3 consisting of a 10:10:1 ratio of Pachyrhizus erosus to water, and to a small amount of soybean. Based on the results of 14 organoleptic test respondents, it is concluded that the best ratio of ingredients is 10:10:1 (water: Pachyrhizus erosus: soybean) due to an overall preference of the third trial with this ratio, in terms of taste, aroma, color, and consistency. Pachyrhizus erosus is the dominant ingredient in developing alternate plant-based milk. However, findings from the most preferred trial in the organoleptic test suggest that implementing a minor amount of soybean would stabilize the milk-like consistency and flavor. Pachyrhizus erosus’ ability to retain calcium in its water content has been additionally proven in a calcium test using a reagent solution of ammonium oxalate, as even with the trials’ step of straining the liquid content of Pachyrhizus erosus that had been blended with added water, all three trials tested positive based on the high level of the precipitate. Other tests that tackle the quality of each trial include In Silico Testing, biuret protein test, alcohol test, COB test, and pH level testing.
HandExo
Stroke is a very common disease, almost a national disease. In terms of stroke frequency, 匈牙利 ranks second in the world. Every year, 40-50 thousand people become paralyzed or permanently injured as a result of cerebrovascular disorders. This number is three to four times higher than in developed countries. Almost every Hungarian family is affected! Of course, saving the life of someone who has a stroke is the most important thing, but rehabilitation is also very important, since only with the help of a physiotherapist will the patient be able to live a full life.
Whose feather is that? A cross-views between a naturalist and a molecular biologist
Identifyingthespeciesorsexofabirdbasedonafeatherfoundinnatureisoftenchallenging,evenwith the help of reference books. However, determining the presence of a rare species in a habitat using an indirectpresenceindicator,suchasafeather,canhelpinimplementingspecificmeasuresforpreserving the species. The aim of this study is to investigate whether DNAgenotyping is better than specialized books when identifying bird feathers. Toanswerthisquestion,Icollectedfeathersinthewildand,withthehelpoftwobooks,triedtoidentify theirspeciesandsex.Then,assistedbyDrGwenaëlJacob(UNIFR),Iisolatedtwogenesinnineselected feathers. The investigated genes were the CHD gene for sexing and the COI gene for species identification.Todothis,theDNAwasfirstextractedfromthefeathers,purified,andamplifiedbyPCR. Subsequently,anelectrophoresis wasperformedtosexthe samples andcheckthatthe PCRamplification hadworkedproperly.Finally,thesamplesweresequencedbytheMicrosynthlaboratory(St-Gall),and the obtained sequences were entered into the NCBI database. Acomparisonoftheresultsobtainedwitheachofthetwodifferentmethodsshowsthattheidentification with specialized books was fairly successful. 56% of the species identification made with the books were indeed confirmed by genotyping. DNAanalysis provided a different result only for feather #16. However,33%ofgeneticidentificationfailed,eitherduetogeneticmaterialqualityorlaboratoryerrors. Asitwaspossibletoidentifythesexofonlyonesample(feather#14)withthebooks,itwasnotpossible tomakeatruecomparisonofthetwoapproaches.However,asgeneticsexingworkedwell(onefailure, feather #28), it can be inferred that genetic sexing is more effective than using books. This work demonstrated that DNAis not infallible and that sometimes books are equally effective in identifyingbirdspeciesfromafeather.However,insexingbird,DNAremainsmoreefficient.Thus,one can conclude that DNAgenotyping is not superior but rather complementary to specialized books for identifying bird feathers.
EIPCA : Electrocardiogram Interpretation Pattern for Cardiovascular Abnormalities Prediction
Cardiac Arrhythmia is one of the conditions in the group of heart and blood vessel diseases that can lead to sudden cardiac arrest (sudden death) and other conditions if not diagnosed quickly and accurately. According to research, heart and blood vessel diseases are the most common diseases and have a mortality rate of one-half of all non-communicable diseases. According to WHO statistics in 2012, it was found that there were 7.4 million deaths from heart and blood vessel diseases, and in 2017, the number of deaths increased to 177 million people, or about 94,444 people per day. Diagnosis of heart and blood vessel diseases can be done by measuring the electrical activity of the heart, and after the examination, a specialized physician will read and analyze the graph to find abnormal patterns. Currently, the shortage of qualified heart specialists to read the graph and screen for heart disease is a medical position shortage, which requires transferring data to hospitals with specialists, resulting in delays in diagnosis and treatment and even death. The project "EIPCA: Electrocardiogram Interpretation Pattern for Cardiovascular Abnormalities prediction" is an application program that assists in screening for fatal diseases that arise from abnormal heart rhythm. It employs artificial intelligence to aid in the screening and analysis of the electrical waveforms generated by an ECG machine, thus reducing diagnosis time and addressing the shortage of cardiology experts. EIPCA is comprised of two systems: (1) a system for screening and analyzing ECG waveforms using artificial intelligence to solve the problem of a shortage of specialized cardiology physicians, and (2) a system for risk assessment of fatal diseases by analyzing the ECG waveform data. The target group of the project is Rural hospitals, as well as health-related agencies. The project team hopes that the development of this project will significantly improve the efficiency and speed of screening for heart-related diseases, ultimately reducing the mortality rate from these diseases in the future.
Fabrication of Highly Efficient and Cost-effective Tandem Dye-sensitized Solar Cells for Building Integrated Photovoltaics
In recent years, there has been an extreme rise in population and economic development, which requires a great demand for energy worldwide. Global energy consumption has been increasing nearly every year for over half a century [1]; it is rapidly rising in the form of nonrenewable energy, such as coal, oil, natural gas, and fossil fuel. Fossil fuel overreliance has resulted in a dramatic rise in atmospheric carbon dioxide (CO2) concentrations.