金屬多酚配位奈米載體合成與多功能腫瘤治療法開發
本研究結合奈米合成技術與生物醫學, 利用表沒食子兒茶素沒食子酸酯 (Epigallocatechin gallate, EGCG) 作為載體 調控摻雜Cu2+/Cu3+與 Fe2+/Fe3+之含量 並以π-π交互作用力附載缺氧性抗癌藥物替拉扎明 (Tirapazamine, TPZ) 成功製備出多功能金屬多酚配位奈米顆粒簡稱為EFeCuTPZ。 材料經紫外-可見光譜 (UV-vis),、動態光散射 (DLS) 及掃描式電子顯微鏡 (SEM) 確認其粒徑大小、形貌學與穩定性。利用808 nm和671 nm雷射分析其光熱轉換效率 評估光熱療法效果,。在腫瘤微酸性環境下, EFeCuTPZ可利用高濃度之H2O2行芬頓反應 (Fenton Reaction) 產生高活性之氫氧自由基 (•OH), 展現化學動力療法 (Chemo dynamic-therapy, CDT),。同時, 藉由材料中的Cu²⁺與腫瘤環境中的穀胱甘肽 (Glutathione, GSH)反應減少高活性物質 (Reactive oxygen species, ROS) 的消耗 增強CDT之療效。酸性條件下 TPZ顯著釋放 有助於腫瘤治療。 另外, 細胞實驗顯示EFeCuTPZ具有高生物相容性與治療效果, 成功開發出具CDT,、CT及PTT功能之奈米複合材料 為醫學新興藥物材料提供可能性。
EIBraille: An Electromagnetic Field-Powered Braille Training Device with Development of Printed Circuits and Algorithms for Visually Impaired Individuals
Visual impairment ranks among the top three disabilities globally, with affected individuals projected to increase from 39 million in 2015 to 115 million by 2050. Despite this growing prevalence, over 95% of visually impaired individuals face difficulties in learning Braille (AFB, 2022). In Thailand, the issue is compounded by limited resources, with only 48 schools for the blind serving 6.5% of visually impaired children, alongside a shortage of trained teachers and prohibitively expensive Braille displays. To address these challenges, the EIBraille Box was developed as a cost-effective and accessible tool enabling visually impaired individuals to practice Braille independently. The device utilizes electromagnetic field generation based on Lenz's Law and electromagnetic induction, employing copper coils and varying currents to drive a Braille dot display mechanism controlled by a microcontroller. Results show the device achieves an average display rate of 30–120 milliseconds per cell and a Braille dot-changing frequency of 3–20 cycles per second. The production cost is reduced from 11,660 USD to 87 USD—over 130 times more affordable—while maintaining performance comparable to traditional mechanisms. Additionally, the device integrates with a web application aligned with the Ministry of Education's curriculum to enhance learning. The EIBraille Box is planned for deployment across 48 schools affiliated with the Northern School for the Blind. Plans include extending access to individuals unable to attend schools via alternative distribution channels. This project stores high capacity to achieve global reach by partnering with the World Blind Union, extending its services to rural areas and ensuring access for underprivileged communities. This effort seeks to promote literacy among the blind on a worldwide scale. This innovation strives to enhance equity for the visually impaired by enabling blind individuals to participate in inclusive educational environments alongside their peers. It aims to eradicate the challenges of illiteracy and ensure equitable access to quality education.
探討藉由隧道奈米管(TNTs)傳遞Chromogranin-A對神經母細胞瘤細胞的影響及其相關機制
Previous research observed increased TNTs formation between hypoxic and normoxic neuroblastoma cells, aiding hypoxic cell survival. CHGA was identified as a potential factor in this process. This study compared CHGA expression and whether CHGA exists in TNTs in five cell lines, with SH-SY5Y showing the highest levels, followed by SK-N-BE(2)C, while the other three showed lower expression. Future studies will focus on the impact of CHGA on cell survival and its mechanisms.
大「逆」不道—局部逆境下植物體內傳訊與物質分配機制
When a leaf of a plant encounters stress, how does the plant convey the stress signal to other tissues and manage nutrient distribution? This field of study has been largely unexplored. However, the unique interconnected frond structure of Lemna trisulca, along with the use of a divided Petri dish, is very suitable for handling localized stress and investigating the mechanisms of intracellular signaling and nutrient distribution. Research has shown that when the mother leaf experiences localized stress, it releases healthy daughter leaves to minimize collateral damage to the daughter leaves. Conversely, when the daughter leaves face localized stress, the mother leaf chooses to retain them and continues supplying them with nutrients to support their survival. In-depth studies revealed that stressed daughter leaves accumulate Reactive Oxygen Species (ROS), triggering nutrient distribution by sending a distress signal to the mother leaf. This prompts the mother leaf to use Ca2+ as a signaling molecule to deliver nutrients to the daughter leaves. Selective detachment is regulated and triggered by the interaction between Ca2+ and ROS within the mother leaf. When the mother leaf undergoes stress, Ca2+ acts upstream to induce ROS accumulation at the nodes, sending a unidirectional detachment signal to the daughter leaves. This causes ROS accumulation at the daughter leaf nodes, inducing detachment and thereby reducing the collateral damage the daughter leaf could experience due to the mother leaves.
大「逆」不道—局部逆境下植物體內傳訊與物質分配機制
When a leaf of a plant encounters stress, how does the plant convey the stress signal to other tissues and manage nutrient distribution? This field of study has been largely unexplored. However, the unique interconnected frond structure of Lemna trisulca, along with the use of a divided Petri dish, is very suitable for handling localized stress and investigating the mechanisms of intracellular signaling and nutrient distribution. Research has shown that when the mother leaf experiences localized stress, it releases healthy daughter leaves to minimize collateral damage to the daughter leaves. Conversely, when the daughter leaves face localized stress, the mother leaf chooses to retain them and continues supplying them with nutrients to support their survival. In-depth studies revealed that stressed daughter leaves accumulate Reactive Oxygen Species (ROS), triggering nutrient distribution by sending a distress signal to the mother leaf. This prompts the mother leaf to use Ca2+ as a signaling molecule to deliver nutrients to the daughter leaves. Selective detachment is regulated and triggered by the interaction between Ca2+ and ROS within the mother leaf. When the mother leaf undergoes stress, Ca2+ acts upstream to induce ROS accumulation at the nodes, sending a unidirectional detachment signal to the daughter leaves. This causes ROS accumulation at the daughter leaf nodes, inducing detachment and thereby reducing the collateral damage the daughter leaf could experience due to the mother leaves.
ChordSeqAI: Generating Chord Sequences Using Deep Learning
This report presents a novel AI-driven tool for aiding musical composition through the generation of chord progressions. Data acquisition and analysis are discussed, uncovering intriguing patterns in chord progressions across diverse musical genres and periods. We developed a range of deep learning models, from basic recurrent networks to sophisticated Transformer architectures, including conditional and style-based Transformers for improved controllability. Human evaluation indicates that, within the context of our specific data processing methods, the chord sequences generated by the more advanced models are practically indistinguishable from real sequences. The models are then integrated into a userfriendly open-source web application, making advanced music composition tools accessible to a broader audience.