全國中小學科展

二等獎

金屬多酚配位奈米載體合成與多功能腫瘤治療法開發

本研究結合奈米合成技術與生物醫學, 利用表沒食子兒茶素沒食子酸酯 (Epigallocatechin gallate, EGCG) 作為載體 調控摻雜Cu2+/Cu3+與 Fe2+/Fe3+之含量 並以π-π交互作用力附載缺氧性抗癌藥物替拉扎明 (Tirapazamine, TPZ) 成功製備出多功能金屬多酚配位奈米顆粒簡稱為EFeCuTPZ。 材料經紫外-可見光譜 (UV-vis),、動態光散射 (DLS) 及掃描式電子顯微鏡 (SEM) 確認其粒徑大小、形貌學與穩定性。利用808 nm和671 nm雷射分析其光熱轉換效率 評估光熱療法效果,。在腫瘤微酸性環境下, EFeCuTPZ可利用高濃度之H2O2行芬頓反應 (Fenton Reaction) 產生高活性之氫氧自由基 (•OH), 展現化學動力療法 (Chemo dynamic-therapy, CDT),。同時, 藉由材料中的Cu²⁺與腫瘤環境中的穀胱甘肽 (Glutathione, GSH)反應減少高活性物質 (Reactive oxygen species, ROS) 的消耗 增強CDT之療效。酸性條件下 TPZ顯著釋放 有助於腫瘤治療。 另外, 細胞實驗顯示EFeCuTPZ具有高生物相容性與治療效果, 成功開發出具CDT,、CT及PTT功能之奈米複合材料 為醫學新興藥物材料提供可能性。

奈米 MPC 材料應用於電阻式有機氣體感測器

工業環境中揮發性有機化合物(VOCs)的洩漏不僅危害人體健康,更可能導致工安事故。現有氣體感測器常存在選擇性低、反應時間長等限制。本研究開發高選擇性與快速反應的奈米材料導電式氣體感測器,以實現即時監測。 研究中合成並測試六種銀奈米 (Ag-MPC)材料:Ag@C6、Ag@C12、Ag@C16、Ag@MCP、Ag@C12/MCP及Ag@C12/MBT複合材料。在500-5000 ppm濃度範圍內偵測1-丁醇、正辛烷及間二甲苯等目標氣體的電阻變化。實驗結果顯示,Ag@C12經官能基修飾後,對1-丁醇具有明顯的選擇性。我們開發基於Arduino微控制器的即時監測系統,透過運算放大器電路實現高精度的電阻變化檢測。可以在工業環境中持續監測VOCs濃度並即時示警。未來將著重於優化訊號放大電路、開發新型官能基修飾材料、實現複雜氣體混合物的組分分析。開發成本低、反應快、選擇性好的感測系統,為工業安全監測領域提供實際應用價值。

旋轉的力量–離心力抽水機與其變因對抽水效率的影響

此研究是關於一個離心力抽水機的理論建模和實驗設計,我探討了此抽水機的流量與出口流速、分別影響了時間內抽出水量或抽水落地的位置。在初步的實驗觀察中、我發現抽水時的不同流況以及其影響,並且用定性解釋去描述它的邊界條件。在我流量的理論建模中,我考慮了基本的離心力與重力、雖然這兩種力描述了水的運動、但無法用來預測流量。我再加入白努力方程式來計算壓差、並充分的考慮摩擦阻力在紊流情況和水管材質。之後我利用F=ma推導水受合力的情況、考慮離心力、重力與摩擦阻力能到出口流速的預測。最後將理論裡實驗比較、結果非常相似。我利用3D列印改變6種抽水機的變因,將每項的結果與理論比較、並分析其誤差的原因。最後利用先前的結論能夠的設計一個可客製化與最佳化的離心力抽水機。

EIBraille: An Electromagnetic Field-Powered Braille Training Device with Development of Printed Circuits and Algorithms for Visually Impaired Individuals

Visual impairment ranks among the top three disabilities globally, with affected individuals projected to increase from 39 million in 2015 to 115 million by 2050. Despite this growing prevalence, over 95% of visually impaired individuals face difficulties in learning Braille (AFB, 2022). In Thailand, the issue is compounded by limited resources, with only 48 schools for the blind serving 6.5% of visually impaired children, alongside a shortage of trained teachers and prohibitively expensive Braille displays. To address these challenges, the EIBraille Box was developed as a cost-effective and accessible tool enabling visually impaired individuals to practice Braille independently. The device utilizes electromagnetic field generation based on Lenz's Law and electromagnetic induction, employing copper coils and varying currents to drive a Braille dot display mechanism controlled by a microcontroller. Results show the device achieves an average display rate of 30–120 milliseconds per cell and a Braille dot-changing frequency of 3–20 cycles per second. The production cost is reduced from 11,660 USD to 87 USD—over 130 times more affordable—while maintaining performance comparable to traditional mechanisms. Additionally, the device integrates with a web application aligned with the Ministry of Education's curriculum to enhance learning. The EIBraille Box is planned for deployment across 48 schools affiliated with the Northern School for the Blind. Plans include extending access to individuals unable to attend schools via alternative distribution channels. This project stores high capacity to achieve global reach by partnering with the World Blind Union, extending its services to rural areas and ensuring access for underprivileged communities. This effort seeks to promote literacy among the blind on a worldwide scale. This innovation strives to enhance equity for the visually impaired by enabling blind individuals to participate in inclusive educational environments alongside their peers. It aims to eradicate the challenges of illiteracy and ensure equitable access to quality education.

探討藉由隧道奈米管(TNTs)傳遞Chromogranin-A對神經母細胞瘤細胞的影響及其相關機制

Previous research observed increased TNTs formation between hypoxic and normoxic neuroblastoma cells, aiding hypoxic cell survival. CHGA was identified as a potential factor in this process. This study compared CHGA expression and whether CHGA exists in TNTs in five cell lines, with SH-SY5Y showing the highest levels, followed by SK-N-BE(2)C, while the other three showed lower expression. Future studies will focus on the impact of CHGA on cell survival and its mechanisms.

大「逆」不道—局部逆境下植物體內傳訊與物質分配機制

When a leaf of a plant encounters stress, how does the plant convey the stress signal to other tissues and manage nutrient distribution? This field of study has been largely unexplored. However, the unique interconnected frond structure of Lemna trisulca, along with the use of a divided Petri dish, is very suitable for handling localized stress and investigating the mechanisms of intracellular signaling and nutrient distribution. Research has shown that when the mother leaf experiences localized stress, it releases healthy daughter leaves to minimize collateral damage to the daughter leaves. Conversely, when the daughter leaves face localized stress, the mother leaf chooses to retain them and continues supplying them with nutrients to support their survival. In-depth studies revealed that stressed daughter leaves accumulate Reactive Oxygen Species (ROS), triggering nutrient distribution by sending a distress signal to the mother leaf. This prompts the mother leaf to use Ca2+ as a signaling molecule to deliver nutrients to the daughter leaves. Selective detachment is regulated and triggered by the interaction between Ca2+ and ROS within the mother leaf. When the mother leaf undergoes stress, Ca2+ acts upstream to induce ROS accumulation at the nodes, sending a unidirectional detachment signal to the daughter leaves. This causes ROS accumulation at the daughter leaf nodes, inducing detachment and thereby reducing the collateral damage the daughter leaf could experience due to the mother leaves.

大「逆」不道—局部逆境下植物體內傳訊與物質分配機制

When a leaf of a plant encounters stress, how does the plant convey the stress signal to other tissues and manage nutrient distribution? This field of study has been largely unexplored. However, the unique interconnected frond structure of Lemna trisulca, along with the use of a divided Petri dish, is very suitable for handling localized stress and investigating the mechanisms of intracellular signaling and nutrient distribution. Research has shown that when the mother leaf experiences localized stress, it releases healthy daughter leaves to minimize collateral damage to the daughter leaves. Conversely, when the daughter leaves face localized stress, the mother leaf chooses to retain them and continues supplying them with nutrients to support their survival. In-depth studies revealed that stressed daughter leaves accumulate Reactive Oxygen Species (ROS), triggering nutrient distribution by sending a distress signal to the mother leaf. This prompts the mother leaf to use Ca2+ as a signaling molecule to deliver nutrients to the daughter leaves. Selective detachment is regulated and triggered by the interaction between Ca2+ and ROS within the mother leaf. When the mother leaf undergoes stress, Ca2+ acts upstream to induce ROS accumulation at the nodes, sending a unidirectional detachment signal to the daughter leaves. This causes ROS accumulation at the daughter leaf nodes, inducing detachment and thereby reducing the collateral damage the daughter leaf could experience due to the mother leaves.

ChordSeqAI: Generating Chord Sequences Using Deep Learning

This report presents a novel AI-driven tool for aiding musical composition through the generation of chord progressions. Data acquisition and analysis are discussed, uncovering intriguing patterns in chord progressions across diverse musical genres and periods. We developed a range of deep learning models, from basic recurrent networks to sophisticated Transformer architectures, including conditional and style-based Transformers for improved controllability. Human evaluation indicates that, within the context of our specific data processing methods, the chord sequences generated by the more advanced models are practically indistinguishable from real sequences. The models are then integrated into a userfriendly open-source web application, making advanced music composition tools accessible to a broader audience.

旋轉的力量–離心力抽水機與其變因對抽水效率的影響

此研究是關於一個離心力抽水機的理論建模和實驗設計,我探討了此抽水機的流量與出口流速、分別影響了時間內抽出水量或抽水落地的位置。在初步的實驗觀察中、我發現抽水時的不同流況以及其影響,並且用定性解釋去描述它的邊界條件。在我流量的理論建模中,我考慮了基本的離心力與重力、雖然這兩種力描述了水的運動、但無法用來預測流量。我再加入白努力方程式來計算壓差、並充分的考慮摩擦阻力在紊流情況和水管材質。之後我利用F=ma推導水受合力的情況、考慮離心力、重力與摩擦阻力能到出口流速的預測。最後將理論裡實驗比較、結果非常相似。我利用3D列印改變6種抽水機的變因,將每項的結果與理論比較、並分析其誤差的原因。最後利用先前的結論能夠的設計一個可客製化與最佳化的離心力抽水機。

克雷伯氏肺炎菌莢膜型K47菌株之噬菌體分離及其莢膜多醣分解酶表現

克雷伯氏肺炎菌(Klebsiella pneumoniae)近年來於亞洲盛行,其除了傷害健康外,亦對於醫療經濟造成一定程度的影響。隨著時間發展,此細菌也逐漸獲得了抗藥性,使早期使用之抗生素不再有效,因此,尋找治療此疾病的替代療法成為近年來持續被關注的議題。由於其對細菌具高度專一性,噬菌體之莢膜多醣分解酶被認為極具開發抗生素替代療法之潛力。 本研究陸續於污水中分離純化出1212P2、H-P7、H-P8、0505P5、0505P6、05052P5、0505Kp3等噬菌體,並藉由一系列實驗,篩選出可能具有莢膜多醣分解酶的噬菌體。最後將候選噬菌體1212P2、0505Kp3進行全基因定序。 未來,將進行全基因序列分析,若成功比對並找到具有莢膜多醣分解酶潛力之基因,我們將對其加以表現並測試活性。並進一步進行體內試驗檢驗此噬菌體或其莢膜多醣分解酶的效力,探討其是否能作為開發藥物的工具,為對抗克雷伯氏肺炎菌盡一份努力。