Anti-bacterial Crab bio-bandages with Bio-dressings 2.0
Commercially available bandages such as hydrocolloid are neither biodegradable nor anti-bacterial. Chitin is known to be the second most naturally available polysaccharide which could be transformed to chitosan which is known to be anti-bacterial (Hasan, 2018) (Chao, 2019) and haemostatic (Okamoto, 2003) (Hu, 2018). Chitosan can be further converted to hydrogel which is bio-degradable and has good water absorbance. Anti-bacterial crab bio-bandages and crab bio-dressings should be bio-degradable as it took 42 days and a month for complete bio-degradation respectively, so they should be better than commercial bandages such as Nexcare Hydrocolloid as the disposal of anti-bacterial crab bio-bandages with bio-dressings would no longer pose burden to landfilling or threat to our environment. Anti-bacterial crab bio-bandages with bio-dressings are anti-bacterial with degree of deacetylation of DD% (measured using FTIR Spectrum II) 82.6% (due to the presence of chitosan) even without the application of other anti-bacterial agents and hence can provide complete protection of wounds from skin and soft tissues infections and haemostatic (due to the presence of chitosan). After testing and certification based on IS997:2004 and BS EN 13726-1, they should meet many requirements specified. Anti-bacterial crab bio-bandages should be eligible for marketing. Some results were as follows: 1.4 Anti-bacterial effect of crab hydrogels and roasted crab hydrogels Pure chitosan, crab chitosan, crab hydrogels and roasted crab hydrogels showed significant anti-bacterial effect. NO oral bacterial colonies were present in drinking water with crab hydrogels. Thus crab hydrogels could serve as effective anti-bacterial wound dressings. 1.6 Basing on IS997:2004 standard, the load per unit of area of anti-bacterial bio-bandages was 342g/m2 which met the minimum requirement of 36g/m2, the anti-bacterial bio-bandages had stronger tension strength (>20N both in dry and wet conditions) than commercial hydrocolloid. (2.7N dry 2.8N wet) which was comparable with that required (50-67N) and pH of about 7 which met the pH range of 4.5-8. 1.7 The FSA Free-Swell Absorbency of synthetic blood of crab hydrogel bio-dressings was 1.86g per 5cm x 5cm dressing which was much higher than that of commercial hydrocolloid (0.299g per 5cm x 5cm dressing) based on BS EN 13726-1.
CONTACTLESS AND NON-DESTRUCTIVE DETECTION OF CHICKEN MEAT CONTAMINATION WITH LASER SPECKLE METHOD
Harmful microorganisms in food can cause deterioration of human health, poisoning and in some cases even death. Especially fresh meat and chicken products create a suitable environment for the growth of microorganisms in terms of the nutrients it contains, water activity and pH level. For this reason, detection of microorganisms in meat products is an important issue in terms of food safety and human health. In this project, it is aimed to detect live microorganisms in meat products, especially chicken meat, in a simple, non-destructive, non-contact and fast way using laser speckle method. Laser speckle images of healthy and stale chicken meat were taken, contrast parameter and correlation analysis of the obtained patterns were made. It was observed that the contrast parameter for staled chicken meat increased by approximately 3 times compared to fresh chicken. This increase provides an understanding of the difference between contaminated chicken and fresh chicken. Speckle density changes over time in relation to the movements of living microorganisms. Thus, the correlation in laser speckle density patterns taken from contaminated tissues is disrupted. In the measurements taken with photodiode, by analyzing the change of light intensity of the speckle patterns on fresh and contaminated tissues over time, the detection of microorganisms was made easier and more precisely without the need for image processing. The proposed measurement system is a new method that detects meat contamination with laser speckle imaging. It can be developed and made portable and can be used easily in homes. Since it is a simple, non-destructive and fast method, it can be used to determine the shelf life of meat in food distribution places and markets. In addition, it has the potential to be calibrated and used for other food products other than meat products. The system developed with this study is cheap and easy to use, and the laser speckle imaging method is used in a different field other than biomedical, contributing to the literature.