全國中小學科展

四等獎

如「膠」似「漆」-台灣淡水渦蟲黏液黏性及誘導抗菌分析 Mucus Viscosity and Induced Antibacterial Analysis of Taiwanese Freshwater Planarian.

渦蟲黏液仿生應用評估,首先評估渦蟲黏液仿生材料黏著劑可行性,結果發現搖晃刺激能提高渦蟲黏液運動黏度 (5.17 mm2/s) 及承受正向應力程度 (3.25 ± 0.74 kPa)。不同收集渦蟲黏液方法,利用蛋白質電泳並以過碘酸硝酸銀染色法分析,皆可發現245 kDa醣蛋白,推測為黏液中黏性蛋白,未來將以LC-MS分析渦蟲黏液中245 kDa醣蛋白種類並推測其功能。第二部分為渦蟲黏液誘導抗菌分析,實驗發現爬行組、搖晃組及受傷組渦蟲黏液不會產生抑菌環,進一步將渦蟲置於大量環境細菌D (Staphylococcus haemolyticus) 中,一天後渦蟲自體分泌具有抗菌能力的黏液。最後進行渦蟲黏液細菌分析,發現黏液細菌編號M030 (Stenotrophomonas maltophilia) 能對環境細菌H (Staphylococcus haemolyticus) 產生抗菌能力,未來將使用API ZYM分析黏液細菌分泌酵素,與渦蟲黏液分泌酵素比較已推測其與渦蟲交互關係。

介電潤濕機制探討及應用-水電車

將液滴置於鋪上介電層的電極板,接上電壓時,液滴因表面張力及接觸角產生變化而移動,此現象被稱為介電潤濕,其裝置能讓生醫等產業進行精準的微量藥物配置。為了探討此現象原理及改善裝置,本研究測量液滴位於不同電壓之電極板上方時,液滴接觸角及介電層厚度;透過數值模擬計算系統總能量、視覺化系統的電位空間分布,並計算電容,以能量角度模擬液滴移動模式;對於平面式裝置在長時間移動水珠後,產生水珠移動速率趨緩,甚至朝反方向移動的現象給予解釋;改良文獻中平面式和雙層式的電潤濕裝置,將雙層式上板改為導線。因為形狀酷似電車,因此我們稱其為「水電車」,此裝置保留高電容特性的同時,降低阻力。實驗證實其水珠移動能力優於平面式裝置,除了使液滴更好移動外,相較於封閉的雙層式裝置,開放式系統的特點能讓生醫研究人員更方便置換樣品。

Prismalla: Mist water collector

The lack of drinking water in human settlements triggers a series of problems that are linked and affect the development of humanity: health problems, lack of water security for companies, lack of jobs, insecurity, among others. We observe this problem in the communities of the municipality of Las Vigas de Ramírez, Veracruz, where there is a great problem with the water supply, although there is a high presence of mist. Faced with this situation, we undertook the task of investigating a water harvesting method that is easy to implement, operate and maintain. We investigated and analyzed the methods of mist condensation through physical barriers, finding that the polyethylene shadow mesh was the means to achieve this, because it allows the passage of the wind, it is very light, easy to manipulate and above all that it presents the phenomenon of percolation that allows water droplets of various diameters to be accommodated therein. We designed a device that allows to present a mist catchment area through a prismatic structure enabled with meshes and condensed water receivers, portable, easy to use and maintenance and very economical with a performance of 20 liters per day. To achieve our project, factors such as air humidity, dew point, wind speed and direction, height, temperatures and available spaces must be considered.

彩色二維條碼手持產品開發之探討

QR Code是由黑白模組組成的二維數位條碼,掃描後可讀取儲存的訊息。受限於設計原理,QR Code使用二進位制儲存資料。增加模組數目可增加資料量,但若在條碼內塞進太多模組時,尺寸太小的模組將無法被掃描器讀取。此外,目前QR Code掃描器僅支援單張掃描,並無法應付同時多張條碼掃描的實務需求。 如能克服顏色辨識,理論上彩色二維條碼將能克服現行QR Code的限制,但市面上並無相關產品可供測試。因此本專題設計了一款10×10、具8顏色的"Colour Matrix",並利用Raspberry Pi開發Colour Matrix在手持裝置上運作的軟硬體來進行實驗。此實驗成功利用機器學習演算法在Raspberry Pi上進行的顏色辨識。開發的程式在單張掃描上效能與使用pyzbar辨識QR Code相當;在多張掃描方面,使用pyzbar辨識QR Code的解碼成功率為3.1%,而本專題的方法將成功率提升至92.4%,擴增數位條碼的使用範圍,具商用價值。

摻鈀鹵氧化鉍奈米晶體光催化還原二氧化碳

本研究將以BiOCl、BiOBr以及Pd/BiOCl的晶體製備二氧化碳還原之光觸媒,用以還原二氧化碳,期許能製造出具有經濟價值的還原產物,以緩解全球暖化並利用可再生能源。此外,我們藉由探討此類晶體在二氧化碳還原中的差異,比較加入不同鹵族元素及是否摻入鈀金屬對於光催化還原二氧化碳效率及產物的影響。 合成晶體後,我們透過X射線衍射儀(XRD)、掃描式電子顯微鏡(SEM)、能量散射X射線譜(EDX)進行晶體的鑑定,也確定Pd/BiOCl的晶體結構是以BiOCl為主體,且Pd鑲嵌在其表面。我們也以X光光電子能譜儀(XPS)了解晶體的鍵結型態及推測不同晶體表面的OVs相對含量,並以紫外光/可見光光譜儀(UV-vis)檢測樣品的能隙,推測其光催化性能。 我們發現摻入鈀的BiOCl晶體結構為分散的片狀結構,是三種晶體中唯一的奈米晶體,且能隙為三者中最小(2.46eV)、表面OVs含量也增加;表面附著的Pd奈米金屬顆粒更可以協助主催化劑的電子-電洞對維持分離狀態,促進其光催化效率。 最後我們將合成的BiOCl、BiOBr以及Pd/BiOCl晶體應用於光催化還原二氧化碳,並以氣相層析熱導偵測器(GC-TCD)及氣相層析質譜儀(GC-MS)檢測產物種類及產率,發現還原出的氣體產物有H2、CO、CH4。而總還原產物及含碳還原產物的產率皆以Pd/BiOCl為最高。

群魔亂舞的水精靈──探討滴簇在熱水表面的物理現象

本研究探討滴簇的性質與行為,高溫穩定水溶液表面上會有一層水霧般的霧滴層,像是平貼飄浮在水面上,此水滴群為「滴簇」。本研究拍攝下熱水表面的滴簇,並使用ImageJ、Python分析滴簇粒徑等性質以建構物理模型。 藉雷射光凸顯滴簇,觀察滴簇的形成與消失過程。利用被雷射打亮的滴簇在水面的倒影,測量滴簇距水高度。滴簇由5~15μm厚蒸氣層撐起漂浮在水面上,水溫越高,蒸氣層越厚。華(繞射光像)半徑取決於水滴粒徑,本研究分析陽光經水面反射通過滴簇形成的華,測量滴簇粒徑10~20μm。由以上實驗推測:滴簇是高溫蒸氣層接觸低溫的室溫空氣凝結成,溫差愈大凝結量越多,粒徑、數量隨之上升。滴簇會因對流、氣流擾動集體離開水面,留下一道滴簇少的空隙,此現象為「絲狀剝離」。滴簇剛形成時粒徑小,吸收水氣後變大,因此絲狀剝離帶上少許滴簇皆是粒徑較小的滴簇。

Anti-bacterial Crab bio-bandages with Bio-dressings 2.0

Commercially available bandages such as hydrocolloid are neither biodegradable nor anti-bacterial. Chitin is known to be the second most naturally available polysaccharide which could be transformed to chitosan which is known to be anti-bacterial (Hasan, 2018) (Chao, 2019) and haemostatic (Okamoto, 2003) (Hu, 2018). Chitosan can be further converted to hydrogel which is bio-degradable and has good water absorbance. Anti-bacterial crab bio-bandages and crab bio-dressings should be bio-degradable as it took 42 days and a month for complete bio-degradation respectively, so they should be better than commercial bandages such as Nexcare Hydrocolloid as the disposal of anti-bacterial crab bio-bandages with bio-dressings would no longer pose burden to landfilling or threat to our environment. Anti-bacterial crab bio-bandages with bio-dressings are anti-bacterial with degree of deacetylation of DD% (measured using FTIR Spectrum II) 82.6% (due to the presence of chitosan) even without the application of other anti-bacterial agents and hence can provide complete protection of wounds from skin and soft tissues infections and haemostatic (due to the presence of chitosan). After testing and certification based on IS997:2004 and BS EN 13726-1, they should meet many requirements specified. Anti-bacterial crab bio-bandages should be eligible for marketing. Some results were as follows: 1.4 Anti-bacterial effect of crab hydrogels and roasted crab hydrogels Pure chitosan, crab chitosan, crab hydrogels and roasted crab hydrogels showed significant anti-bacterial effect. NO oral bacterial colonies were present in drinking water with crab hydrogels. Thus crab hydrogels could serve as effective anti-bacterial wound dressings. 1.6 Basing on IS997:2004 standard, the load per unit of area of anti-bacterial bio-bandages was 342g/m2 which met the minimum requirement of 36g/m2, the anti-bacterial bio-bandages had stronger tension strength (>20N both in dry and wet conditions) than commercial hydrocolloid. (2.7N dry 2.8N wet) which was comparable with that required (50-67N) and pH of about 7 which met the pH range of 4.5-8. 1.7 The FSA Free-Swell Absorbency of synthetic blood of crab hydrogel bio-dressings was 1.86g per 5cm x 5cm dressing which was much higher than that of commercial hydrocolloid (0.299g per 5cm x 5cm dressing) based on BS EN 13726-1.

應用牛血清蛋白的光交聯性質製作液體繃帶

此研究主要在開發可包容藥物、可客製化且可黏著在皮膚上的液體繃帶的新方法。我們將脈衝雷射光聚焦於混有光感物質的血清蛋白,利用光化學交聯原理,在玻璃基板上製作出微米尺度的蛋白質膠體。我們先最佳化溶劑、焦距及照射時間。接著利用配有精密移動平台的光學顯微鏡,控制照光位置及照光時間。光學顯微影像清楚呈現膠體之形貌,展現可製作成微米尺度之蛋白質膠體陣列或設計之文字圖案。接著以綠色螢光分子模擬藥物,嘗試製作包容藥物的蛋白質膠體。穿透光影像顯示模擬藥物不會改變膠體之形貌,而綠色螢光影像則證明模擬藥物已保留在蛋白質膠體上。最後我們將蛋白質膠體陣列製作為液體繃帶,並成功將蛋白質膠體轉移且黏於模擬人類皮膚的豬皮上。本研究展現進一步發展為大面積、可客制膠體陣列、可摻入藥物的液體繃帶之可能性。

護「灘」神「扇」— 風扇擾流應用於延緩突堤效應

本研究以維繫現今環境,使人類保有生存優勢為前提,旨在探討於海水面下裝設風扇,藉風扇擾流改變沿岸流所挾帶漂沙之沉積分布,延緩突堤效應造成之負面影響。研究先以煙霧觀測五葉、七葉及九葉風扇擾流情形,再透過水流及螢光沙模擬安平商港外海,取得裝設各風扇後漂沙沉積變化過程。除可用於預測近表層沿岸流沉積外,也可套用於海底恆流。未來期望針對流量、流速與地形坡度等作出量化數據,以求得函數模型。另外,亦期望發展洋流發電、綠色能源等各種應用。

開發低水體高水壓養殖系統以優化養殖成果

水產養殖已成為本世紀重要的水產品供應源,多數水生生物需生長在一定的水壓下,才可穩定成長進而達到性成熟及產生子代,而陸池養殖無法產生相對應的水深壓力環境,導致水生生物成長及性成熟困難的困境。本研究提出創新的低水體(水深10.5公分、容量14公升)模式,使用加壓調壓器材、水冷機、過濾系統等自製一個密閉、具穩定調控高水壓、可觀測生物、穩定水溫及水質淨化再利用的循環養殖系統。以本系統進行高水壓(1 kg/cm2 ; 約10公尺深)及次高水壓(0.5 kg/cm2 ; 約5公尺深)分別養殖淡水螯蝦及海水白蝦,結果顯示此些生物皆呈現體色較深及成長速率較快的現象,證明此高壓系統有利其生長。本研究以環境友善為出發點,採用低水體壓力調控方式,營造水生生物適合的水壓環境,未來可應用於水生生物的性成熟養殖操控或特殊養殖等研究,預期將可多元發展且極具發展潛力。