Locus of the Points on Circumference of the n-th Circle that Formed by Moving the Center of any Radius Circles on the Outermost Circumference of Preceding set of Circles
This project aimed to study the motion which occurred from the end point on the circumference of the outermost circle by moving the center on the circumference of a preceding circle and the center of an innermost circle at origin. According to the study, when angular velocity was changed, it caused the different of loci. Based on the above information, finding the locus of the point on circumference of n-th circle that formed by moving the center of any radius circles on circumference of preceding set of circles was studied to get general equation. A set of circle and locus were created with GSP program. First, set the same radius circles on the X-axis with the first circle at origin, then found the relationship that occurred from the characteristics of locus. The result showed that if the ratios of angular velocity are 1:1:1, 2:2:2, 3:3:3, ..., …, n:n:n or 1:2:3, 2:4:6, 3:6:9, …,nw1:nw2:nw3, the characteristics of locus will be the same, while the others will be different. Finally, the equation of locus was found as follow: (x,y) = { ..........see in abstract...........} when .........see in abstract........... Where ri is the radius of i-th circle, zeta i is an angle between the radius of i-th circle and X-axis, wi is the angular velocity, t is elapsed time and alpha i is a starting angle between the radius of i-th circle and X-axis.
What is the relationship between angular velocity and power efficiency of a twin blanded single rotor helicopter system, in hover?
A traditional helicopter requires 60 - 80% more power to hover than when in forward or lateral flight, making the manoeuvre extremely power inefficient. To maximise efficiency, industrially many properties of the helicopter and rotor have been changed and tested, for example: optimising blade shape, fuselage shape and changing weights of different helicopter components. This report in particular aims to find a relationship between power efficiency and angular velocity for a twin bladed hovering helicopter with a single rotor. The angular velocity of a blade measures the frequency of its revolution about a fixed point. A theoretical approach was first taken and then justified with empirical data. Firstly, a model for power efficiency was derived with William Froude’s momentum and blade element theory. The efficiency equations incorporated the thrust and power coefficients. Therefore, the research focused on determining values for these coefficients by manipulating equations, using industrial specifications and simulations from the XFOIL software. In order to validate the accuracy for such theoretically generated data, an experiment was conducted for a comparison. The theoretical and empirical data were concurrent, as they followed a similar trend and the empirical values overlapped within the theoretical error bars. The power efficiency for different angular velocities were then found by substituting values for the coefficients. The results demonstrated a positive relationship; where, as angular velocity increases, power efficiency increases too, then plateaus and repeats the same trend once again. The research raises many questions and could be extended by determining if a similar relationship exists for tri-copters and quadcopters.
Enhancement of Online Stochastic Gradient Descent using Backward Queried Images
Stochastic gradient descent (SGD) is one of the preferred online optimization algorithms. However, one of its major drawbacks is its predisposition to forgetting previous data when optimizing through a data stream, also known as catastrophic interference. In this project, we attempt to mitigate this drawback by proposing a new low-cost approach which incorporates backward queried images with SGD during online training. Under this new approach, we propose that for every new training sample through the data stream, the neural network is optimized using the corresponding backward queried image from the initial dataset. After compiling the accuracy of the proposed method and SGD under a data-stream of 50,000 training cases with 10,000 test cases and comparing our algorithm to SGD, we see substantial improvements in the performance of the neural network with two different MNIST datasets (Fashion and Kuzushiji), classifying the MNIST datasets at a high accuracy for the mean, minimum, lower quartile, median, and upper quartile, while maintaining lower standard deviation in performance, demonstrating that our proposed algorithm can be a potential alternative to online SGD.
Prismalla: Mist water collector
The lack of drinking water in human settlements triggers a series of problems that are linked and affect the development of humanity: health problems, lack of water security for companies, lack of jobs, insecurity, among others. We observe this problem in the communities of the municipality of Las Vigas de Ramírez, Veracruz, where there is a great problem with the water supply, although there is a high presence of mist. Faced with this situation, we undertook the task of investigating a water harvesting method that is easy to implement, operate and maintain. We investigated and analyzed the methods of mist condensation through physical barriers, finding that the polyethylene shadow mesh was the means to achieve this, because it allows the passage of the wind, it is very light, easy to manipulate and above all that it presents the phenomenon of percolation that allows water droplets of various diameters to be accommodated therein. We designed a device that allows to present a mist catchment area through a prismatic structure enabled with meshes and condensed water receivers, portable, easy to use and maintenance and very economical with a performance of 20 liters per day. To achieve our project, factors such as air humidity, dew point, wind speed and direction, height, temperatures and available spaces must be considered.