CONTACTLESS AND NON-DESTRUCTIVE DETECTION OF CHICKEN MEAT CONTAMINATION WITH LASER SPECKLE METHOD
Harmful microorganisms in food can cause deterioration of human health, poisoning and in some cases even death. Especially fresh meat and chicken products create a suitable environment for the growth of microorganisms in terms of the nutrients it contains, water activity and pH level. For this reason, detection of microorganisms in meat products is an important issue in terms of food safety and human health. In this project, it is aimed to detect live microorganisms in meat products, especially chicken meat, in a simple, non-destructive, non-contact and fast way using laser speckle method. Laser speckle images of healthy and stale chicken meat were taken, contrast parameter and correlation analysis of the obtained patterns were made. It was observed that the contrast parameter for staled chicken meat increased by approximately 3 times compared to fresh chicken. This increase provides an understanding of the difference between contaminated chicken and fresh chicken. Speckle density changes over time in relation to the movements of living microorganisms. Thus, the correlation in laser speckle density patterns taken from contaminated tissues is disrupted. In the measurements taken with photodiode, by analyzing the change of light intensity of the speckle patterns on fresh and contaminated tissues over time, the detection of microorganisms was made easier and more precisely without the need for image processing. The proposed measurement system is a new method that detects meat contamination with laser speckle imaging. It can be developed and made portable and can be used easily in homes. Since it is a simple, non-destructive and fast method, it can be used to determine the shelf life of meat in food distribution places and markets. In addition, it has the potential to be calibrated and used for other food products other than meat products. The system developed with this study is cheap and easy to use, and the laser speckle imaging method is used in a different field other than biomedical, contributing to the literature.
EVALUATION OF THE SURFACE TENSIO, LARVICIDAL AND ANTIBACTERIAL ACTIVITY OF PLANT EXTRACTS FROM THE LEAF OF THE ARACA TO COMBAT THE PROLIFERATION OF THE Aedes aegypti MOSQUITO IN STILL WATER CONTAINERS
The Aedes aegypti mosquito is one of the main transmitters of viral diseases in countries close to the equator. This vector promotes a series of generalized endemics that are difficult to control and prevent in these regions. Furthermore, the presence of bacteria in the environment favors the proliferation of mosquito larvae, which increases the probability of Aedes aegypti reproductive success. The Araçzeiro (Psidium guineense Sw.) is a plant present throughout the Brazilian Atlantic Forest and has in its composition, especially in the leaves, several substances that can be used to solve problems. Thus, we sought to verify the activity of flavonoids and polyphenols in terms of their antibacterial potential and the performance of saponins in their larvicidal potential, as well as surfactant, in order to prevent the accommodation of the mosquito in the water at the time of egg deposition and larvae respiration. The saponins were extracted from the araçazeiro leaf using a hydroalcoholic solvent and the flavonoids/polyphenols using methanol, the latter being subsequently rotaevaporated to maintain the non-toxic nature of the extract. Through the aqueous extracts, the content of total saponins by UV-VIS spectrophotometry, surfactant activity, larvicidal activity and toxicity were determined. In relation to the ethanolic extracts, the content of polyphenols and total flavonoids by UV-VIS spectrophotometry and high performance liquid chromatography (HPLC), antibacterial activity and toxicity were determined. The results showed that the aqueous extract has a satisfactory amount of saponins, as well as a surfactant potential due to the formation of foam and larvicidal activity in the two highest concentrations of the extracts. Ethanol extracts showed phenolic acids, especially gallic and ellagic acid, and flavonoids, especially catechin and quercetin, and antibacterial activity in most of the worked concentrations. Both extracts (aqueous and ethanolic) showed a dominant nontoxic character, which favors their use without risk to the environment, having an alternative and sustainable potential for controlling the proliferation of the Aedes aegypti mosquito.