猜牌術
This research mainly talks about how someone, by observing the non-congruent patterns on the backs of the playing cards and by working with the dealer on a pre-arranged lay out, can call out the cards as if he possessed the magic power to see through them. During the card-predicting game, one can use the patterns on the backs of the cards as visual clues (Observing whether it was places upside down or not)to help figure out the probability of where the card is going to show up. Suck a mathematical formula is known as the Pigeonhole Principle. Upon an analysis of the formula, we find that when given that the value of n is greater than 24, we can successfully call out a number of cards that is greater than 2n/3 . The possibility of such mathematical studies in other directions is endless. 中文摘要: 本研究主要探討利用橋牌非對稱的牌背,猜牌者經由和傳遞牌的人的一種事先約定的方 式(排法),彷彿(魔術)透視般的將一疊牌的花色逐步猜出。其猜牌過程是利用牌背 圖案的朝前朝後的指示,配合適當的猜牌張的分配,而運用到的數學法則包含鴿籠原 理,分析與討論歸納。最後我們得到一疊由四種花色張數相等所混合的n 張牌,可猜出 的張數恆大於 2n/3 (n>24 時)。後續可研究的方向仍然甚廣。
雪山姑 翡翠嫂 順姑情 逆嫂意? 雪山隧道之地質環評與工程建設的恩怨情仇
實驗初期以膠體水晶模擬岩層,模擬雪山隧道水平傾斜約 1°,製作壓克力模型(實驗一),證明是否如賈儀平教授所言《雪山隧道=水脈改道》註3,同時此模型也證明隧道防水襯墊完工後,和隧道開挖時水力梯度的明顯變化。再加上訪問坪林到宜蘭圓通寺一帶居民結論是:1. 雪山隧道對翡翠水庫的影響不大,但對宜蘭方面影響很大2. 模型的數據證明『隧道剛開挖因為出水嚴重出現明顯梯度外,其餘二組都不再有特定梯度,即使隧道處也沒有明顯變化』。證明隧道的水平角度對水也沒有太大導引作用。因為隧道的比例對一座山而言相當小,不會有太大的影響。3. 證明隧道防水襯墊完工後,和施工前(隧道未開挖)是同一狀況。釐清對翡翠水庫影響不大後,重心改為宜蘭。此時我們綜合中興工程資料及地調所資料理出“交錯正斷層的破碎岩體”應是大漏水的原凶!1. 於是用實驗一模型加入“破碎岩體” (實驗二)證明破碎岩體水力梯度的明顯變化。2. 再加上訪問頭城附近社區,了解居民因應大漏水後改變取水層的應變措施。3. 於是再設計模型(實驗三)證明不同不透水層的相互關係。實驗末期再度訪問頭城附近社區,赫然發現水稻已開始種植(去年還荒蕪,居民抱怨連連)看到綠意盎然的稻田和笑逐顏開的居民,我們的照片和實驗數據願為雪山隧道工程做個平反!The experiment began by using gel-crystal model to simulate rock strata and the acrylic model to simulate the dip angle of 1° of the Syue Mountain Tunnel. The experiment aimed to prove if the building of the Syue Mountain tunnel will change the water tunnel as Professor Yi-Ping Jia has indicated. The model also shows the obvious change brought by the membrane lining layed on the Tunnel and the dip angle of the water power gradient when the Tunnel was built. The conclusion of our interiew with residents in the Ping-lin and Yuan-Tong Temple in I-lan is as following: 1. The building of the Syue Mountain Tunnel has more impact on the I-lan than Fei-Tsui Reservoir. 2. The statistics of the model proved that Syue Mountain only showed gradient in the beginning when it was built. The Tunnel itself did not show any obious change. The dip angle of Syue Mountain Tunnel did not draw water due to it is small in size compared to the Syue Mountain. 3. The Syue Mountain Tunnel remained unchanged after the membrane lining was layed. After we can clarify that the Syue Mountain Tunnel has less impact on the Fei-Tsui Reservoir, we turned our attention to I-lan. We combined the information provided by Zhong-Xing Construction and the Central Geological Survey, and found that the cross-normal fault if the cause of the leakage. 1. The second experiement was conducted by adding fractured stones to the previous model and proved these stones will cause the obvious change to the water power gradient. 2. We have conducted another to the communities around Tou-cheng and realized that residents have changed the water supply strata in response to the leakage. 3. Finally, we built another model in 3rd experiment to prove the relationship of 3 water proof stratas. At the end of our experiment, we returned to Tou-Cheng and found that residents have started to grow rice and started to have simle on their face. Our experiment and statistics can do Syue Mountain Tunnel justice.
綠色親善大使之誕生-生物可降解性奈米複合材料的研究
近年來,由於科技的進步,導致合成性高分子材料大量開發利用,雖然便利 了人們的生活,卻造成許多環保問題,例如:資源的消耗,以及對環境的污染。 然而「生物可降解人工合成的聚乳酸高分子」和「天然的幾丁聚醣高分子」均具 有優良的生物可相容性及生物可分解性,添加無機層狀蒙脫土可補強其機械性質 之不足。本實驗之目的是以生物可分解之合成性高分子聚乳酸作為主體,再和經 有機化改質後的蒙脫土摻混而製備出聚乳酸/蒙脫土之奈米複合材料。 本實驗主要分為三大部分: (一)以界面活性劑對蒙脫土進行改質 (二)製備聚乳酸/蒙脫土奈米複合材料試片 (三)對試片進行生物降解性測試 此外,本實驗以X-ray 繞射儀(XRD)檢測改質後蒙脫土層間距離的變化; 場發射電子顯微鏡(FE-SEM)觀察生物降解後複材之表面型態;膠體色層分析 儀(GPC)檢測生物分解前後複合材料之分子量的變化;DMA 檢測複合材料之 機械性質;TGA 檢測複合材料之熱穩定性Thanks to the development and advance of modern technology, the synthetic polymers have been put in wide use. Though the synthetic polymers provide convenience for our lives, they also bring about many environmental problems, such as consumption of natural resources and environmental pollution. Nevertheless, both biodegradable man-made PLA(Poly Lactic Acid)and natural chitosan contain good biocompatibility and biodegradability. Else, adding MMT(Montmorillonite)into PLA can modify the mechanical properties. Our experiment aimed to prepare the PLA (Poly Lactic Acid)/ Montmorillonite Nanocomposites by adding organo-modified MMT into the biodegradable PLA. The experiment underwent three phases:(1) modifying MMT by means of CTAB(n-Hexadecyl Trimethyl-ammonium Bromide, CTAB ) and chitosan (2)preparing PLA(Poly Lactic Acid)/ Montmorillonite Nanocomposites (3)testing the biodegradability of the Nanocomposites we prepared. While conducting the experiments, we made use of the XRD(X-ray Diffraction)to examine the change in MMT’s layer thickness. The SEM(Scanning Electron Microscope)was also employed to observe the surface pattern of the Nanocomposites, and used Gel Permeation Chromatography (GPC)to examine the decrease of the Nanocomposites’ molecular weight. Moreover, we also used Dynamic Mechanical Analysis (DMA)to test the mechanical properties of the Nanocomposites(Tensile testing). Last, we test the thermal stability of the Nanocomposites by using Thermogravimetric Analysis (TGA).
高蹺(Himantopus himantopus)度冬族群在八掌溪嘉義市段與台灣沿海各主要棲地數??
台灣地區高蹺?(Himantopus himantopus)的度冬族群出現月份是九月中旬至隔年四月,棲息地主要是在台灣西部沿海之鹽田、魚塭、沙質河口及少數內陸河川,而 1994年成立的台南四草野生動物保護區更是其在台灣的主要繁殖區。 本研究主要從2001年3月~2003年10月進行八掌溪嘉義市段高蹺?族群數量的調查,在 2001.12 月計數到最高數量約 1200 隻,2002.10 月有 1540 隻,連續兩個年度都是全國最高數量,分析環境因子及食物來源皆優於其他各沿海棲地。 在 2003 年 5 月至 9 月調查嘉義沿海高蹺?繁殖配對情形,在 5 月 24 日發現鰲鼓溼地巢數 25 個、幼鳥 14 隻,布袋七區鹽田巢數 9 個,顯示除了台南四草繁殖區外還有其他的繁殖地。 The winter residents of Black- winged Stilts in Taiwan appear in mid-September to next April. Their main habitats are the salt pans, water ponds, sandy river mouths and few inland rivers in western Taiwan. Furthermore, the “Taina Szu-Tao (四草) Wildlife Sanctuary” established in 1994 is their major breeding area. This research is the investigation of the amount of Black- winged Stilt in Pajhang River(八掌溪), Chia-yi city(嘉義市) in 2001, Mar.~ 2003, Oct. The highest amount in 2001, Dec. is about 1200 and in 2002,Oct. is 1540. The amounts of these continuous two years are the highest in Taiwan. To analyze the reasons, the environment and food sources are better than other coastal habitats. In 2003, from May to September, the investigation of mating situation of Black-winged Stilt in Chia-yi coastal areas, twenty five nests and fourteen young birds in Ao-Ku(鰲鼓) wetland; nine nests in Pu-dai (布袋) seven salt pans are found on May 24th. It shows that there are other breeding areas except the breeding areas in Tainan Szu-Tao.
可調式光電元件:奈米線與液晶的結合
藉由結合液晶與奈米線,本研究設計出新型的光電元件,我們發現這些新設計具有先前元件很難達到的新穎特性。首先,我們研究液晶分子與一維磁性奈米線之結合,很有趣的是磁性奈米線在液晶元件內,會沿著液晶方向作整齊排列,更重要的是經由一外加電場,即可調控磁性奈米線之磁場方向。藉由電場調控磁場,是很久以來許多科學家追求的目標,然而成效不彰,本研究提供了一個簡便的方法,克服了長久以來的障礙。第二個例子,我們研究液晶分子與一維半導體奈米線結合之元件,我們證實了半導體奈米線所發射瑩光之電場偏極方向,可以經由外加電場來調控,這個特性對於資訊科技的應用,將很有用處。本研究所觀測到之結果,皆可利用下列事實來理解,奈米線具有很大的表面積,因而增加了與液晶分子之交互作用,經由此增大的交互作用力,奈米線會沿著液晶分子方向排列。值得強調的是,本研究利用了已成熟的液晶顯示器技術,其未來應用性將有很大潛力。New devices based on the composites of liquid crystals and one dimensional nanowires have been designed, fabricated, and characterized. It is discovered that these novel devices own interesting properties that are very difficult to be obtained by conventional ones. As the first example, the liquid crystal device with built-in one dimensional magnetic nanowires has been studied. It is found that the magnetic nanowires can be well aligned along the orientation of liquid crystal molecules. Quite interestingly, the direction of the magnetization of magnetic nanowires can be easily manipulated by an external electric field at room temperature. The phenomenon of electric manipulation of magnetization has been studied since nineteen century, but the achievement is rather limited. Here, we provide a convenient alternative to overcome the long quest search. For the second example, the liquid crystal device with built-in semiconductor nanowires has been investigated. We demonstrate that the polarization of the emission arising from semiconductor nanowires can be easily controlled by an external electric field, which is one of the basic requirements for information technology. All of our observed results can be well understood in terms of the inherent nature of a large surface to volume ratio of one dimensional nanowires, which induces a strong interaction between embedded nanowires and liquid crystal molecules. Therefore, the nanowires can be driven along the orientation of liquid crystal molecules. It is stressed here that our newly designed devices are based on the well established liquid crystal display technology and therefore their practical application can be realized in the near future.
在Sapphire 基材上以電化學沉積YAG 螢光薄膜
A novel method of electrolytic Y3Al5O12 (YAG:X, X=Ce, Eu, Tb) phosphor thin-film coating on sapphire was investigated in yttrium, aluminum, cerium, europium and terbium nitrate solution. By means of X-ray diffraction (XRD), scanning electronic microscopy (SEM) observation, and cathodic polarization tests, the most efficient potential of deposition was found in the region between -1.2 V~-1.5 V. The YAG phosphor thin-film was successfully synthesized by the cathodic deposits were heat-treated at 1200 ℃ for 4 hours. The excitation photoluminescence (PL) spectra of Ce3+ in YAG consists of a strong maximum at about λ=520~530 nm that show yellow emission peak, and a red emission was observed at about λ=595~700 nm by additional Eu3+. The excitation PL spectra monitored inλ=480~500 nm with the amount of Tb3+ and that show green emission peak. The fabrication of YAG phosphor thin-film will be useful to improve the emission intensity of the white LEDs in the future.由電解沈積陰極的電位—電流關係圖、X光繞射分析、SEM 觀察及實驗反應的經驗式我們可以知道要在導電的sapphire(氧化鋁單晶)基材上電解沈積合成燒結YAG 螢光薄膜所需之各類氫氧化金屬,其合適的電解沈積電位為-1.2 V~-1.5 V,我們利用電化學沈積法可以成功地合成欲燒結成YAG 螢光薄膜所需之氫氧化金屬,將所合成之氫氧化金屬放入高溫爐以1200 ℃高溫燒結4 小時後,依據我們目前以光螢光激發(PL)這些YAG 薄膜的光譜結果,可以成功地得到YAG:Ce(λ=520~530nm)黃光螢光薄膜、YAG:Eu(λ=595~700nm)紅光螢光薄膜及YAG:Tb(λ=480~500nm) 綠光螢光薄膜,證明以新的電化學方法可以成功製備YAG 螢光薄膜,相信這些研究成果未來應用在研發提昇白光LED 發光效能上有極大之助益。