金屬多酚配位奈米載體合成與多功能腫瘤治療法開發
本研究結合奈米合成技術與生物醫學, 利用表沒食子兒茶素沒食子酸酯 (Epigallocatechin gallate, EGCG) 作為載體 調控摻雜Cu2+/Cu3+與 Fe2+/Fe3+之含量 並以π-π交互作用力附載缺氧性抗癌藥物替拉扎明 (Tirapazamine, TPZ) 成功製備出多功能金屬多酚配位奈米顆粒簡稱為EFeCuTPZ。 材料經紫外-可見光譜 (UV-vis),、動態光散射 (DLS) 及掃描式電子顯微鏡 (SEM) 確認其粒徑大小、形貌學與穩定性。利用808 nm和671 nm雷射分析其光熱轉換效率 評估光熱療法效果,。在腫瘤微酸性環境下, EFeCuTPZ可利用高濃度之H2O2行芬頓反應 (Fenton Reaction) 產生高活性之氫氧自由基 (•OH), 展現化學動力療法 (Chemo dynamic-therapy, CDT),。同時, 藉由材料中的Cu²⁺與腫瘤環境中的穀胱甘肽 (Glutathione, GSH)反應減少高活性物質 (Reactive oxygen species, ROS) 的消耗 增強CDT之療效。酸性條件下 TPZ顯著釋放 有助於腫瘤治療。 另外, 細胞實驗顯示EFeCuTPZ具有高生物相容性與治療效果, 成功開發出具CDT,、CT及PTT功能之奈米複合材料 為醫學新興藥物材料提供可能性。
Greenhouse Gases Reduction: Conversion of Methane and Carbon Dioxide into Clean Energy
In the upcoming years, both population and energy consumption are expected to increase dramatically [1]. Industrialization has led to a dramatic shift in the energy environment [2], with predictions of a 57% increase in demand for energy between 2002 and 2025 [3]. In addition to organic materials like trees and solid waste, fossil fuels like coal, natural gas, and oil provide more than 90% of the world's energy needs. Their overuse has resulted in the release of climate-altering greenhouse gases like carbon dioxide (CO2) and methane (CH4) into the atmosphere [4]. Scientists and other stakeholders are putting more emphasis on finding solutions to global warming, increasing energy production in order to meet increasing demands, and decreasing emissions of greenhouse gases. Using greenhouse gasses to make useful chemicals or fuels is one solution to both problems [5]. This motivated researchers to investigate the potential of CO2 and CH4 as clean energy sources. The process of dry reforming of methane (DRM) has been identified as a potentially successful strategy for transforming CO2 into marketable syngas with a balanced H2/CO composition [6], [7], [8], [9]. The economic viability of DRM, the reactor type, the availability of raw materials, and the intended use of the produced syngas are all-important considerations. Though DRM is gaining popularity, maintaining its long-term stability is difficult due to carbon accumulation from CO disproportionation and methane degradation [10], [11]. The catalyst used, as well as other parameters like as pressure, temperature, feed concentration, and reactor size, are critical to the process's effectiveness. In this scenario, a nickel catalyst on a La2O3/SiO2 substrate with microspheres and a core-shell structure will be developed to improve the conversion of greenhouse gases into profitable syngas. This catalyst is projected to improve the efficiency and performance of the DRM process significantly.
Application of Carbon Aerogels in Lithium-Air Batteries
One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.
Utilization of Nano cellulose from date palm waste for improvement of thermal stability in epoxy composite
Nano additives is becoming popular trends nowadays due to its nanosize (1-100 nm). Incorporating nano additives in polymer could increase different properties such as mechanical, physical, electrical and thermal stability (1, 2). Different nano additives has been used such as nano copper oxide, nano silica, nano zinc oxide, nano titanium dioxide but most of these come from synthetic or metal oxides that considered as non-environmentally friendly and harmful to human when exposed or inhaled (3). One of the green materials that become attention by researchers is nano cellulose. Nano cellulose can be extracted in different methods and sources such as from wood, and non-woody resources such as kenaf, jute, bamboo as well as from bacteria such as Acetobacter species(4). This making nano cellulose abundantly available in resources. Nano cellulose can be in the form of nano crystalline cellulose (CNC) or NCC or can be in form of nano fibrillated cellulose (NFC) and bacterial nanocellulose (BNC)(5). This nanocellulose has many advantages that can give improvement in different applications such as mechanical, physical, thermal and improving the biodegradation when added together in different matrices (6, 7). Polymers have a problem in thermal stability while processing. It hard to control and maintain the thermal stability of polymer during processing and most polymers considered to have low in thermal stability except for thermosetting polymers such as epoxy. Epoxy has been widely used in many fields such as coating, adhesive, laminates, castings and many more (8). But the drawbacks of epoxy while using is hard to maintain and controll the thermal properties when processing of this materials and used for long period due to aging and attack by free radicals causing by UV radiation (9, 10). In this study we are incorporating nano additives into epoxy as polymer matrix to enhance and improve the thermal stability of composite by crosslinking the polymer chains with the nano additives. Furthermore, the nano additive used is come from nano cellulose extracted from date palm waste and thus to create an environmentally friendly and sustainable nano additives products.
Synthesis of fluconazole analogues with focusing on resistant strains Candida
Fungal infections, particularly those caused by resistant strains like Candida auris and Candida glabrata, pose a significant threat to global health. The widespread use of azole antifungals, such as fluconazole, has driven the emergence of multidrug-resistant strains, undermining the efficacy of existing treatments. These challenges necessitate the development of novel antifungal agents with enhanced activity and reduced resistance profiles. To address resistance mechanisms, we designed and synthesized hybrid molecules combining triazole and thiazolidine-2,4-dione (TZD) pharmacophores. This strategy leverages dual mechanisms of action: inhibiting fungal CYP51, a key enzyme in ergosterol biosynthesis, and disrupting fungal cell wall integrity. The structural versatility of hybrid molecules allows for targeted modifications to enhance antifungal potency, binding specificity, and pharmacokinetics. Using a stepwise synthetic approach, triazole-containing piperazine derivatives were first prepared and coupled with TZD-based carboxylic acids via optimized condensation reactions. The structures of the synthesized compounds were confirmed through advanced spectroscopic methods, including 1D/2D NMR and high-resolution mass spectrometry. The antifungal activity of these hybrids was evaluated in vitro against clinical and reference strains of Candida spp. and Aspergillus fumigatus. Among the synthesized compounds, 6a demonstrated notable activity against Candida parapsilosis (MIC 0.06 μg/mL), comparable to voriconazole. Compound 4b exhibited moderate activity against C. parapsilosis (MIC 1–2 μg/mL) and A. fumigatus (MIC 8 μg/mL). However, most compounds showed limited efficacy against highly resistant strains such as C. albicans 8R and C. krusei. This study highlights the potential of hybrid triazole-TZD molecules in overcoming resistance and improving antifungal efficacy. While promising, further optimization is required to broaden the spectrum of activity and enhance efficacy against multidrug-resistant pathogens. These findings contribute to the growing field of antifungal drug development, emphasizing hybrid approaches as a viable solution for combating fungal resistance.
一價銠金屬催化肉桂胺衍生物進行不對稱氫芳基化反應
Rhodium(I)-Catalyzed Asymmetric Hydroarylation of Cinnamylamine Derivatives
一價銠金屬催化反應已經被廣泛應用於有機化學合成領域中。而本研究以具保護基之肉桂胺衍生物1與四芳基硼鈉試劑2a作為起始物進行銠金屬不對稱氫芳基化催化反應,得到具有保護基的掌性2,3-雙芳基丙胺衍生物3,並探討此反應的掌性雙烯配基對於反應的影響。本研究已完成使用Ts(對甲苯磺醯基)保護基之肉桂胺衍生物1a作為起始物進行反應,並改變與銠金屬錯合的配基,發現當配基使用2,5號位為芳基取代之配基L(掌性雙環[2,2,1]雙烯配基)時,反應有較好的位置選擇性,其中最佳的是芳基取代為苯基之配基L1,其位置選擇性比例為1:0:0.09。目前將進行改變起始物1之氮上的保護基,以L1作為配基進行反應,並與1a比較,優化反應性及產率。
Low-Cost Nickel-based Catalyst for Electrocatalytic Splitting Of Ammonia Towards Clean Hydrogen Production
Increasing energy needs alongside the urgent issues of chemical pollution has prompted the need for developing novel green energy sources. Nitrogen-based fertilizers are of fundamental importance for the ecosystem as their usage has increased eight times in the last fifty years [1]. On the other hand , increased use of nitrogenous fertilizers is followed by higher ammonia emissions, which are dangerous pollutants responsible for deterioration in biodiversity by means of eutrophication, acidification of soil and water, and climate change [2]. Ammonia has the2apacityy to bond with other pollutants including sulfur oxides and nitrogen oxides to create particles that cause smog, which is associated with lung disease. Ammonia also increases frost sensitivities and causes necrosis of many plant species [3.] Therefore, there is a need to properly manage the ammonia-rich nitrogen waste to decrease the environmental threat factors. Of the possible approaches suggested for ammonia waste treatment, the ammonia electro-oxidation reaction (eAOR) has various promising features for application in the energy sector. It is economically appealing because Ammonia can serve as an excellent hydrogen carrier due to its storage capabilities and existing transport infrastructure alongside having no net carbon emissions. Apart from this, it requires 95% less of the theoretical energy [4] to perform the process. But the reaction is kinetically slow [5], which has been a research obstacle during the development of (eAOR), due to factors ofmslow reaction rate and large catalytic overpotential that this process consumes an unnecessary amount of power [6]. Nickel-based catalysts are a promising solution to these problems, they are cheaper , more stable and easier to produce than electrocatalysts for water electrolysis which makes it highly energy efficient for widespread use on the industrial scale. N films deposited on the anodic side also allow the creation of N-containing products such as (NH42SO3) and nitrates, which can be converted into fertilizers or renewed into the nitrogen cycle to make the process more environmentally friendly while enhancing the (eAOR) process [7,8]. Compared to Pt and Ir which are the most used noble metals, they are less poisoned on the potentials less than 0.65V and are more stable [9,10]. However , noble metals are scarce, and their cost is high for industrial applications as well as the energy they waste during (eAOR) [11].