全國中小學科展

化學

理論設計與高效率合成三吲哚衍生物應用於癌症標靶藥物 Theoretical Design and Highly Efficient Synthesis of Triindole Derivatives for Targeted Cancer Therapeutics

抗癌藥物的研究一直受到重視,吲哚(indole)衍生物可助抵擋自由基,而二吲哚(Di-indole)衍生物已成為抗癌劑。鈣離子/鈣調蛋白依賴性蛋白激酶 (Ca2+/calmodulin-dependent protein kinase II,CaMKII)之抑制劑為癌症標靶藥物重要研究方向之一,抑制CaMKII可降低各種癌細胞增殖和存活,但目前尚無CaMKII抑制劑藥物。本研究以三吲哚為主架構,發展衍生物作為CaMKII抑制劑,期望可應用於抗癌劑。電腦軟體Discovery Studio2016模擬各種三吲哚衍生物分子模型與CaMKII α(PDB: 2VZ6)之結合能,選出結合能較大之化合物3,並延伸結構/活性(SAR)最佳化,進行一系列高效率藥物合成純化工作。經由送測生物細胞活性,其中先導化合物(lead compound) 3-1對癌細胞之毒性高且對CaMKIIα的抑制效果佳,符合癌症治療上的需求,將繼續最佳化此結構,並進行細胞訊號傳送途徑及動物實驗。

探究螢光單體分子對激發複合體發光性質的影響及其應用

本研究設計與合成一系列的電子供體分子,以研究分子單體的化學結構對於所形成的激發複合體光物理性質的影響。 五個所設計的供體分子已被成功的合成並確定均具有分子內電子轉移的性質 其躍遷偶級距變化分布範圍在17.6-28.6D之間。 將此五個供體分子分別與兩種電子受體分子在溶液聚集在一起,利用在長波長處所新生的螢光發光,推測激發複合體的形成。研究的成果並顯示,具有類似三角形結構的供體分子將更容易形成激發複合體,而具有棒狀結構的分子則較不易形成之。此成果有效的提供有關於單體分子結構的設計對於所需激發複合體光物理性質的影響,形成可快速地提供各式不同發光波長的材料,將可作為在發光二極體發光層材料、螢光感測器、生物成像等領域需求時的分子設計藍圖與指引。

ZIFs與釩氧化物作為鋅電池陰極材料之應用與性能研究

本研究旨在優化鋅離子電池陰極材料的性能,選用沸石咪唑酯骨架材料(ZIFs)與釩氧化物(V6O13)進行複合材料的合成與應用。隨著鋰電池成本的上升,鋅離子電池因其安全性與成本效益逐漸受到重視。ZIFs 具有高比表面積及良好的離子導電性,而V6O13則因多價態和優良導電性而成為潛力材料。通過結合這兩種材料,我們開發了具有多孔結構和優異穩定性的複合陰極材料,再使用 PXRD、SEM 及 EDX 對材料進行結構表徵,並使用此新材料製作鋅離子電池進行電化學性能測試。結果顯示,熱裂解後的 PY-VxOy@ZIF-Zn/Co具有最佳的克容量及穩定性,且在500次循環後保持良好的穩定性。本研究展示了ZIFs和V6O13結合在鋅離子電池中的應用潛力,為低成本、高效能的儲能解決方案提供了新的方向。

製備藻類衍生物碳點與 Mxene複合材料並應用高效超級電容

本研究運用綠藻、螺旋藻、卡拉膠(k,i,λ)進行製備碳點並應用高效超級電容。本實驗已完成綠藻、螺旋藻、卡拉膠( k,i,λ)在不同的pH值中的溶解度測試,並找出綠藻、螺旋藻、卡拉膠(k,i,λ)各自適合溶解的溫度及溶液。此外,中途也已透過文獻中的實驗證實我們實驗中所運用的電化學實驗設計及裝置可以成功製備出碳點。而在電化學製備碳點的部分目前完成單獨藻類、藻類加histidne的電擊實驗以及測其吸收光譜,也運用先前製備出較穩定的碳點加入MXene進行電化學分析,透過碳點擴大MXene分層,以達到增加MXene電化學效能的效果。最後,預計之後將進行更多的電化學分析,進一步地確認碳點結合MXene能在超級電容的應用。

法拉第波輔助合成奈米鎳並應用於有機污染物的快速脫色 Nanostructured Nickel Synthesized through Faraday Waves and Its Application to Rapid Contaminants Decolorization

超音波已廣泛用於奈米粒子的製備,然可聽聞音對奈米粒子製備的影響卻少有研究。本研究以簡易喇叭裝置產生可聽聞音並在溶液表面產生法拉第波及內部流動,來輔助製備奈米鎳。法拉第波是一種表面非線性駐波,透過調整容器形狀、振動頻率等,可產生不同波形。本研究嘗試在法拉第波輔助下,以化學還原法及電沉積法製備出不同性質的奈米粒子。SEM量測並比較無輔助、法拉第波輔助、超音波輔助製備出的奈米鎳的形貌、分布的差異。並將其應用於有機物(即剛果紅、亞甲藍、4-硝基苯酚、2-硝基苯酚)之催化還原。而由SEM量測、催化還原結果及理論模擬反應熱可知,法拉第波確實能夠改善奈米鎳的粒徑大小、分散性、對氫的吸附能力及催化還原能力。

自組裝DNA探針於GNP@PANI電極以檢測miRNA

在許多疾病,如癌症、心血管等疾病中,微核醣核酸 ( microRNA,簡稱miRNA) 的表現水平可作為診斷指標。現行檢測miRNA多使用RT-qPCR,然而此技術成本高、操作繁瑣且耗時。本研究自行設計可抓取目標miR-155的DNA分子探針,透過化學合成與修飾將此探針接合在奈米金-聚苯胺( GNP@PANI )電極上,組裝出具靈敏度與特異性的DNA分子電極。實驗結果顯示:此自組裝探針電極具有良好的線性檢量關係,偵測極限可達0.1 nM。在摻雜多種miRNA的樣品中,此電極仍具有極佳的專一性,回收率高達101.5 %。應用於含生物基質的尿液樣本,可不受背景干擾,其檢測差異僅約0.4 %。本研究採用電化學技術來檢測miRNA,不但成本低、操作簡便,且可依據目標分子進行客製化設計,為新一代檢測技術開創前景。

法拉第波輔助合成奈米鎳並應用於有機污染物的快速脫色 Nanostructured Nickel Synthesized through Faraday Waves and Its Application to Rapid Contaminants Decolorization

超音波已廣泛用於奈米粒子的製備,然可聽聞音對奈米粒子製備的影響卻少有研究。本研究以簡易喇叭裝置產生可聽聞音並在溶液表面產生法拉第波及內部流動,來輔助製備奈米鎳。法拉第波是一種表面非線性駐波,透過調整容器形狀、振動頻率等,可產生不同波形。本研究嘗試在法拉第波輔助下,以化學還原法及電沉積法製備出不同性質的奈米粒子。SEM量測並比較無輔助、法拉第波輔助、超音波輔助製備出的奈米鎳的形貌、分布的差異。並將其應用於有機物(即剛果紅、亞甲藍、4-硝基苯酚、2-硝基苯酚)之催化還原。而由SEM量測、催化還原結果及理論模擬反應熱可知,法拉第波確實能夠改善奈米鎳的粒徑大小、分散性、對氫的吸附能力及催化還原能力。

ZIFs與釩氧化物作為鋅電池陰極材料之應用與性能研究

本研究旨在優化鋅離子電池陰極材料的性能,選用沸石咪唑酯骨架材料(ZIFs)與釩氧化物(V6O13)進行複合材料的合成與應用。隨著鋰電池成本的上升,鋅離子電池因其安全性與成本效益逐漸受到重視。ZIFs 具有高比表面積及良好的離子導電性,而V6O13則因多價態和優良導電性而成為潛力材料。通過結合這兩種材料,我們開發了具有多孔結構和優異穩定性的複合陰極材料,再使用 PXRD、SEM 及 EDX 對材料進行結構表徵,並使用此新材料製作鋅離子電池進行電化學性能測試。結果顯示,熱裂解後的 PY-VxOy@ZIF-Zn/Co具有最佳的克容量及穩定性,且在500次循環後保持良好的穩定性。本研究展示了ZIFs和V6O13結合在鋅離子電池中的應用潛力,為低成本、高效能的儲能解決方案提供了新的方向。

探究螢光單體分子對激發複合體發光性質的影響及其應用

本研究設計與合成一系列的電子供體分子,以研究分子單體的化學結構對於所形成的激發複合體光物理性質的影響。 五個所設計的供體分子已被成功的合成並確定均具有分子內電子轉移的性質 其躍遷偶級距變化分布範圍在17.6-28.6D之間。 將此五個供體分子分別與兩種電子受體分子在溶液聚集在一起,利用在長波長處所新生的螢光發光,推測激發複合體的形成。研究的成果並顯示,具有類似三角形結構的供體分子將更容易形成激發複合體,而具有棒狀結構的分子則較不易形成之。此成果有效的提供有關於單體分子結構的設計對於所需激發複合體光物理性質的影響,形成可快速地提供各式不同發光波長的材料,將可作為在發光二極體發光層材料、螢光感測器、生物成像等領域需求時的分子設計藍圖與指引。

製備藻類衍生物碳點與 Mxene複合材料並應用高效超級電容

本研究運用綠藻、螺旋藻、卡拉膠(k,i,λ)進行製備碳點並應用高效超級電容。本實驗已完成綠藻、螺旋藻、卡拉膠( k,i,λ)在不同的pH值中的溶解度測試,並找出綠藻、螺旋藻、卡拉膠(k,i,λ)各自適合溶解的溫度及溶液。此外,中途也已透過文獻中的實驗證實我們實驗中所運用的電化學實驗設計及裝置可以成功製備出碳點。而在電化學製備碳點的部分目前完成單獨藻類、藻類加histidne的電擊實驗以及測其吸收光譜,也運用先前製備出較穩定的碳點加入MXene進行電化學分析,透過碳點擴大MXene分層,以達到增加MXene電化學效能的效果。最後,預計之後將進行更多的電化學分析,進一步地確認碳點結合MXene能在超級電容的應用。