全國中小學科展

化學

塑膠發電– PLA降解之燃料電池研究

本實驗主要將PLA塑膠產品以水解降解、光降解方式形成小分子乳酸單體或其寡聚物,作為燃料電池之燃料,使其再循環產生能量,減少塑膠產品對環境之汙染。PLA降解之方法,可將PLA浸泡於低濃度氫氧化鈉溶液或照射UV光進行前處理再置入乙醇中,或直接放入高濃度氫氧化鈉中並加熱將其迅速降解,後者可於5分鐘內將市售PLA產品完全降解。以上述PLA降解溶液作為燃料電池之燃料,同時以自製氧氣供應裝置提供氧氣,作為電池兩極。電極為鍍鉑鎳鉻絲,電解液為0.7M氫氧化鈉溶液,電壓可達0.85V。PLA雖為生物可分解性塑膠,現今仍主要以燃燒方式處理,此迅速降解PLA之方法可解決目前使用後處理之困境。同時本實驗為首次利用乳酸作為化學燃料電池之燃料,並成功使其產生電力,此研究可提供PLA塑膠分解與利用之新思維。

全無機 CsPbBr3鈣鈦礦量⼦點與其⼆價陽離⼦摻雜之光學特性、穩定性與噴墨列印應⽤之研究

本研究提出一款新型硫化氫偵測之螢光探針,我們選用BTIC作為探針螢光主結構並藉由修飾上疊氮達成偵測硫化氫之目的。帶入設計上,利用PPH3形成與粒線體的電位差使其將探針帶進粒線體,最終進行粒線體內硫化氫之偵測與顯影。 目前本實驗已合成出螢光探針基本結構與側鍊結構,並初步檢測探針對於硫化氫的偵測能力,確認其能夠與之反應並有顯著螢光變化。另外,目前已成功接上側鍊,待純化出目標產物後將進行進一步的性質檢測,包括選擇性、靈敏性、及持久性。 最後,我們預計將探針實際進行生物顯影,做多個結構顯影的比對,確認本研究之成效。此外,我們希望此款螢光探針除硫化氫偵測外,還能夠進行生物機制探討或疾病細胞篩選的應用。

Laying waste to Energy problems

This research aims at exploiting civil and pre-treated industrial wastewaters that go into the purifier and those that come out of it after various treatments in order to build a galvanic cell with the goal of producing clean electric energy. Our background hypothesis is that it is possible to exploit the existing potential difference between these two types of water to generate electricity. In fact, the water sent for purification contains elements (carbon, nitrogen, sulphur, phosphorus, etc.) in a predominantly "reduced" state and its oxygen level is scarce. On the other hand, the water coming out of the process contains the same elements in a mostly "oxidized" state and it is rich in oxygen. Those chemical discrepancies should get the job done. In order to simulate the two types of water, two different solutions were prepared. The first one is highly concentrated with pollutants and gaseous nitrogen is insufflated in it to reproduce its anoxic environment. The second one’s pollution level is based on the Italian legislative limits of chemical contaminants for superficial waters (Legislative Decree 152/2006) and the semi-cell is insufflated with gaseous oxygen.

即時觀測核苷酸調控單一DNA 分子上重組酵素的結合反應

在DNA重組反應中,核苷酸擔任輔助重組酵素E. coli RecA蛋白和DNA結合的重要角色,近期研究發現環狀核苷酸 Cyclic di-AMP 和Cyclic di-GMP是細菌內普遍控制複雜細胞活動的二級訊號,因此本研究運用單分子拴球實驗直接觀察單一DNA分子,以布朗運動值反映DNA長度的特性,分析環狀核苷酸參與調控後,重組酵素結合上DNA的反應速率與機制,進而了解環狀核苷酸在調節基因組穩定性的角色。 藉由分析單一種類核苷酸與混合核苷酸的實驗結果,得到兩種環狀核苷酸在重組酵素的結合反應中皆屬抑制劑,大幅降低蛋白結合上DNA的反應速率,且就結構來看,相較一般參與反應的三磷酸腺苷會增加DNA長度,新發現Cyclic di-AMP有縮短部分DNA長度的特質。 由於DNA修復主要倚賴DNA重組反應進行,因此若細菌DNA出現損壞時,加入環狀核苷酸抑制重組酵素結合上破損的DNA分子,使細菌DNA無法成功複製,達到預防細菌擴散的效果。

The effects of Different Synthesis Methods and Catalysts on Crude Aspirin

Aspirin is one of the most used and well-known medicines world-wide. It can be synthesized by reacting acetic anhydride and salicylic acid in a warm temperature of around 60-80°C. This reaction is usually catalyzed by sulfuric or phosphoric acid. This paper will investigate alternative catalysts, safer and more environmentally friendly, as well as compare different synthesis methods with different heat mediums, one using a water bath and the other amicrowave. By doing so, the effects of the catalyst and the method of synthesis on the yield, purity and environmental consequence of crude aspirin synthesis will be deduced. The targeted utcome is to find the alternative method as more energy efficient, and to find a greener safer catalyst to sulfuric and phosphoric acid. Further background information, exploration, and explanation is in the appendix. The targeted outcome will be to find a viable alternative catalyst that is safer and more environmentally friendly, and to find that the microwave synthesis method consumes less energy.

合成CaMKII抑制劑作為抗癌潛力藥物

鈣及攜鈣蛋白調節酶(CaMKII)存在於大部分細胞中,研究顯示其在多種癌細胞中過度表現。苯基磺醯胺衍生物為CaMKII抑制劑的常見結構,而吲哚與靛紅是常見藥物結構,因此本研究參考文獻[1],並擴展臨床尚未解決問題,優化此兩類衍生物以製成抗癌藥物。第一系列以苯基磺醯胺為主架構,改良文獻[1]中抑制效果最佳的化合物1,第二系列則修改吲哚與靛紅的取代基,設計出多種候選分子。初步利用分子模擬分析軟體(Discovery Studio)模擬蛋白質與藥物分子結合,考量結合能、結合方位、藥物取得及合成難易度,選定有潛力的WACY與CYWA系列結構進行合成。本實驗使用創新的步驟合成,簡易、高效率且符合綠色化學,再經核磁共振與高解析度質譜儀驗證得出高純度產物。最後根據生物檢測發現WACY-2對乳癌細胞毒性高和對於一般乳腺細胞和乳癌細胞的選擇性都較市售抑制劑KN-93佳,而WACY-6對CaMKII抑制效果為WACY系列最佳;CYWA-2, 3, 6, 7對乳癌細胞的毒性和對CaMKII抑制效果又優於KN-93與WACY系列許多。本研究成功製備出符合理論計算預期且抑制蛋白質的效果較KN-93佳的化合物,未來極具潛力作為抗乳癌的標靶藥物。

Synthesis of Substituted Pyrrolidin-2-ones and Isoindolines from Donor-Acceptor Cyclopropanes and Anilines/Benzylamines

The development of rapid and efficient synthetic approaches to the bioactive cyclic and polycyclic azaheterocycles is one of the most important challenges in organic synthesis. In this work effective and simple synthetic approaches to polysubstituted pyrrolidin-2-ones 2 and isoindolines 3 from donor-acceptor cyclopropanes 1, bearing the ester group as the one of acceptor substituents, and amines were developed. The γ- pyrrolidone based skeletons and isoindoline ring system is a constituent of many biologically active molecules, both natural and synthetic, and a key component of clinically relevant entities (Fig.1,2) [1,2]. The synthesis of pyrrolidin-2-ones 2 includes Lewis acid-catalyzed opening of the donor-acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino esters, followed by in situ lactamization and dealkoxycarbonylation. The reaction has a broad scope of applicability; a variety of substituted anilines, benzylamines, and other primary amines as well as a wide diversity of donor-acceptor cyclopropanes bearing (hetero)aromatic or alkenyl donor groups and various acceptor substituents, can be involved in this transformation. In this process, donor-acceptor cyclopropanes react as 1,4-C,C-dielectrophiles, and amines as 1,1- dinucleophiles. The resulting di- and trisubstituted pyrrolidin-2-ones can be also used in subsequent chemistry to obtain various nitrogen-containing polycyclic compounds of interest to medicinal chemistry and pharmacology, such as benz[g]indolizidine derivatives. The synthesis of the substituted isoindolines 3 is based on the domino-reaction between donor-acceptor cyclopropanes, bearing in ortho-position of aromatic substituent a bromomethyl group, and different primary amines (e.g., anilines, benzylamines, cycloalkylamines) was developed. The reaction involves the generation of secondary amine followed by nucleophilic ring opening of cyclopropane with amino group. Moreover, this process provided a new practical method for the rapid synthesis of benzo[b]pyrrolizidinone 4 from readily available starting materials.

以奈米碳與二氧化矽複合物優化發光薄膜之研究

本研究延伸自文獻影片「奈米碳來排隊」實驗,自製奈米碳量子點(carbon quantum dots, cQD),並結合鈣鈦礦量子點(perovskite quantum dots, pQD)製程,以探討優化發光薄膜材料的合成技術與製程。目前完成的變因探討如下:(一)比較碘化鉛與溴化鉛兩種前驅物對pQD粒子成長的效應,(二)萃取不同型態cQD的溶劑效應,(三)調控cQD之添加方式,包括劑量、順序與添加時刻。製程條件的添加順序分成兩種流程:(A)方法PC(perovskite - carbon):先有鈣鈦礦後有碳,也就是先合成pQD,期間再加入cQD,(B)方法CP(carbon - perovskite):先有碳後有鈣鈦礦,也就是先加入cQD,再合成pQD。 為了找出pQD發光特性的優化條件,研究結果進行討論四項指標:光致發光量子產率(photoluminescence quantum yield, PLQY)、譜線半峰全寬(full width at half maximum, FWHM)、波長位移及pQD穩定度。觀察PLQY與FWHM的結果顯示:多數以方法PC添加之cQD能達優化效果,而其中又以甲苯萃取的PhMe-cQD(178.0%)與異丙醇萃取的IPA-cQD(182.6%)對PLQY提升幅度最為顯著。目前也進行市售碳化矽(SiC)與自製碳矽複合物(簡稱CSiX)的添加效應,期能找出更加優化pQD條件,發展出簡易製程但更具綠能經濟之發光薄膜原料,也提供碳循環應用之契機。

奈米氧化鐵銅複合體應用於腫瘤協同治療

本研究結合奈米技術及生物醫學,創新以牛血清蛋白為載體,以一步法合成全新CuxFe3-xO4@BSA-IR780(CFO@BSA-IR780)多功奈米複合材料。材料鑑定由TEM、UV-Vis等儀器進行組成及性質分析。 材料中BSA賦予其優異水溶性;鐵離子有益在腫瘤觸發內源性H2O2產生活性極高的氫氧自由基,進行化學動力治療(CDT)。且光敏劑(IR780)讓材料呈紅色螢光,在近紅外光照射兼具光熱(PTT)與光動力治療(PDT)特性。 然而腫瘤內源性穀胱甘肽(GSH)過量會消除自由基,限制CDT/PDT效果。因此材料摻雜銅離子,藉氧化數變化增強療效。 後續更將CFO@BSA-IR780實際運用於细胞測試、螢光顯影與MRI檢測,確認低毒性、治療效果佳,並率先結合兩種診斷。成功發展具CDT、PDT、PTT及腫瘤顯影之多功奈米複合材料,以多種方式提升效率並降低傷害,提供醫學新興之藥物材料。

Synthesize Sodium Sesquicarbonate and Increase Yield

In order to recycle disposable diapers, we investigated the conditions where sodium sesquicarbonate (Chemical formula Na2CO3・ NaHCO3・ 2H2O hereinafter called sesqui) precipitates selectively from sodium carbonate and the conditions for high yield. For the selective precipitation of sesqui, we defined the time required for the reaction solution to pass through the sesqui precipitation area in the Na2CO3-NaHCO3-H2O phase diagram (45°C) as Δ t. As a result, we revealed that Δt is involved in the selective precipitation of sesqui, and that we can synthesize sesqui without the expensive addition of L-Arginine as used in a previous research. Also, we proposed the “Stay method”, in which the supply of CO2 is stopped for 30 minutes to the lengthen the Δ t, and found that we could synthesize sesqui selectively even under conditions in which sodium bicarbonate is likely to be precipitated as well. Regarding the high yield of sesqui, the yield was greatly improved by the common ion effect of Na by adding NaOH to the reaction solution, sesqui synthesis by repeated reactions with CO2, and sesqui recovery by adding the anti-solvent ethanol, reaching a sesqui conversion rate of 95%. This means 109 g of sesqui can be synthesized from 100 g of Na2CO3. Moreover, we confirmed that these synthesized samples have almost the same detergency as commercial sesqui. We did a test calculation to reveal the usefulness of this research. First, if diaper recycling technology is put into practical use and all used diaper waste in Saijo City can be recycled, a reduction of 534 t/year of used diaper waste can be expected. This corresponds to a 2.3% reduction in Saijo City's waste output. From the ash that would ultimately remain after being recycled, we expect up to 35.3 t/year of synthesized sesqui using our experimental method. In addition, a CO2 reduction of 8.2 t/year is possible in the process, which is about equivalent to the volume of one gymnasium.