三角形與其外接錐線的生成錐線性質探討
本研究源自三角形的重心及其外接圓所構作的線段比值的古老幾何性質,我們不但推廣原命題,還創造新命題:給定△ABC與其外接錐線Γ,令直線AG, BG, CG分別交Γ 於 A', B', C' 點,再取任意k值,探討P點集合的性質。 Γ3, k={P|AA'/PA' + BB'/PB' +CC'/PC'=k} (1)Γ3,k為二次曲線系,其橢圓、拋物線、雙曲線之形態不因k值而改變,而是被外接錐線Γ所決定。 (2)發現△ABC重心 G、Γ中心O、Γ3,k 中心O3,k 的共線性及比例常數。 (3)完整劃分 Γ3,k的非退化與退化型態,並發現只有Γ3,k 為橢圓時,k 值有跳躍現象。 (4) 發現錐線Γ上取相異六點而生成兩個錐線Γ3,k、Π3,k重合的充分條件。 最後,我們以「錐線 Γ 上取一點、兩點到多點」的線性組合手法,推廣多邊形與其外接錐線的生成錐線Γn,k之性質。
The Polar Equation from Butterfly Sprinkler Heads
This project aims to create the polar equations from the relation of the points on the centre line of the water twisted from Butterfly sprinkler heads. The water path includes inner rim, outer rim and centre line laying in the middle of the water path is used Rhombus’s property. The diagonals are perpendicular bisectors of each other to create the centre line. Then we create the polar equation of the centre line of water that twists from 4 types of the Butterfly sprinkler heads: edge frame, curve frame, STL and STL rotary. The polar equation of outer rim and inner rim is created by adding and removing the “ f ” value ( ; is the distance between the outer rim and the centre line, and is the geometric sequence that is ) of the coefficient (a) of the polar equation respectively. The results show that the formal equation of the centre line is which can explain the different properties of Butterfly sprinkler heads. If “ f ” value is increasing the water path and the blade will be wider that affects droplets distributing thoroughtly. Furthermore the relationship between the volume of water and the radius of water distribution can be processed to find the least time that can increase the appropriate moisture level of soil.
永恆的旋轉木馬
本研究作品主要在探討「平面上各種曲線內關於相鄰等角割線段的新的不變量」與「空間中特殊圓錐曲面的特殊等角割線段的新的不變量」。 若圓錐曲線、蚶線等曲線中有相鄰等角的 條割線段,則這n條割線段之m次方和為定值。在圓錐曲線中這些割線段的交點可以是焦點、曲線內任意點,在蚶線中則為基點。甚至經由反演,還能將此性質推廣至直線上。 研究最後擴及至空間,先考慮特殊橢圓、拋物、雙曲球面,其一焦點為F,將正N面體VN之重心G與F重合,使得VN以F為旋轉中心任意旋轉,此時由F對VN之各頂點做射線交圓錐曲面於 PN,則FPN之倒數m次方和為定值,其中u=1,...,n,N=4, 6, 8, 12, 20 。
攜手共解圓-扭結理論之探討
此篇研究發現在任何一個結中,都可以利用「牽手順序」和「交錯點編碼」兩種結的資訊直接看出一結化簡後的圖形。利用從「Reidemeister moves」所衍伸出的四種化簡方法{α, β, γ, δ}能更有效率的簡化結,並證明只需{α, β, γ, δ}就可化簡任何結,也利用{α, β, γ, δ}來驗證HOMFLY多項式是結不變量。由圖形及結的資訊我們發現,可使用「牽手順序」和「交錯點編碼」,搭配所討論出{α, β, γ, δ}的通式,依照步驟及通式簡化任何結。 本篇最重要的成果為:只需利用{α, β, γ, δ}即可化簡所有的結,而且比Reidemeister moves更有效率,因此可用{α, β, γ, δ}取代Reidemeister moves。 不管是一個封閉曲線或是兩個以上封閉曲線,都會遵守前述的規則,可利用{α, β, γ, δ}簡化圖形。文中也討論了較特別並具有規律的結──「星星結」,發現星星結只需使用「牽手順序」即可簡化,最後利用星星結的結論,發展出牽手遊戲中特殊的牽手遊戲情形。
An optimal-route algorithm for an intermodal Metro Manila trip planners using multiple parameters
Parameters of traffic, road availability, and fare were integrated into a web-based application for determining the best public transport routes within Metro Manila in order to assist commuters in their travel planning, whether for business or for pleasure. A user-friendly interface was developed to obtain a user’s place of origin and destination, as well as preferences in travel time, mode of transportation, and cost of journey. By accessing the traffic roadway network of the metropolis, a real-time situation of road availability was obtained, and used in a modified Dijkstra’s shortest-path algorithm to produce a model of a real-time adaptive transport network of Metro Manila. From the model, an optimal route that considers the user’s preferences can be determined. This project will be immensely useful in helping both businessmen and tourists in planning their routes that will save on time and money.