全國中小學科展

數學

格點多邊形的邊數最大值及其作圖法探討

在先前的研究中,特定的格點多邊形如正方形與直角三角形曾經被探討過。任意格點多邊形性質被歸類於資訊研究,目的為用程式估計當範圍很廣或邊數很多時格點多邊形性質的數值解。 先前研究中,作者已針對格點多邊形的性質進行初步的探討,本研究進一步補足先前研究的缺陷:用數學化的方式探討格點多邊形的邊數最大值。研究當中探討的多邊形包含凹多邊形及凸多邊形,研究者改良先前研究中的「迂迴作圖法」,提出新的「對稱作圖法」,以「定義基本構形、先作短邊、再作中間」的順序,確保必定可在特定範圍內建構出符合最大邊數解的格點多邊形;並以數學歸納法證明當矩形範圍短邊為12單位以上時,必存在格點數與邊數相等的格點多邊形,達成重要的突破。 本研究推導出格點多邊形的邊數最大值如下式。運用本研究的結果,將有助於在有限區域或空間中依照特定規律設計最大路徑,例如遊樂場迷宮、駕訓班車道、或積體電路設計。 S(n,m)={█(4 {if n=1∨m=1}@3n+1 {if n=2∨m=2}@24 {if m=n=4}@(n+1)(m+1) {otherwise})┤

以分塊矩陣及生成函數探討多人跳躍數列方法數

本研究針對以往跳躍數列進行1人的討論延伸至多人的跳躍數列;多人跳躍數列規則為「同一個時間點手上最多只會有一顆球回到一位小丑手中」、「需連續、規律的接及丟出球,並且無限持續下去」、「丟球前可以有準備的時間」以上三項規則,因此此研究和以往多數文獻的題目假設有所不同,也比較貼近現實可能的情況。 多人跳躍數列的討論較為複雜,因此採用有向圖的概念進行討論,該圖的點元素代表當下每一顆球在幾秒中回到手中的狀態、邊元素則為每個狀態轉移時的丟球方式;接著將有向圖轉換為鄰接矩陣,並將點元素用類似2進位的形式進行分類以便整理成規則一致的分塊矩陣,接著由Cayley–Hamilton定理及多人跳躍數列的性質得到將鄰接矩陣的n次方求跡即為多人跳躍數列方法數。最後為了將不同狀況的方法數有一個好的整理,我們採用生成函數表示方法數並得到一定的成果。

「分」庭抗禮—礦石分配之研究

現在手中有許多礦石及k個袋子,我們認定「一套」礦石是將n個礦石分成k份的k堆礦石。每次取一套礦石,僅改變每堆礦石對應的袋子而不改變每堆的數量,將礦石放入對應的袋子中,這個操作稱為「放一套」。本研究先探討需放入的最少套數使得每個袋子中的礦石數一樣多,後段則討論可使礦石均分在袋子中的所有套數所形成之集合,亦結合部分圖論性質以完整證明。如果改變n,k及一套中的礦石分配方式,對於所需放入的套數有何影響?我從k=2、k=3慢慢試驗,搭配程式的輔助,進而快速找出需放最少套數的方法,及可達成均分套數與礦石分配的關聯。

臺灣各縣市感染相對比率的馬可夫鍊探討

本研究主要探討一群帶原者在城市間的隨機移動。假設城市總共是有限多個、每次移動只跟當前城市有關,與總移動次數、移動到當前城市的過程無關。本研究假設每次移動時間為一天。在上述條件下,我去思索帶原者是否必定會到達特定的都市。此時加入了任意城市均與此特定都市連通的條件。 關於數學推導的部分,先證明當移動次數趨近無限大時,帶原者到達首都的機率趨近於1。再來由轉移矩陣具穩定狀態的性質,證明期望值與變異數的收斂。最後,利用矩陣的極限與隨機變數兩種方式,解得期望值與變異數的關係式,將極限問題轉換成解線性方程式。 在模型實作方面,我收集了CDC五月的資料,並經過平均、換成感染相對比率後形成機率矩陣。運用拉格朗日參數法求最小值條件後,藉由大量的隨機撒點以牛頓法迭代求得最適轉移矩陣,以評估疫情變化。並利用自助抽樣法求得6月感染相對比率的95%信賴區間,繪圖進行比較。

繞形相遇

在一期校內的階城盃中,我發現一個有趣的問題,在一個正多邊形,甲走一圈花 分鐘,乙走一圈花 分鐘,請問第一次甲乙在何時、何點相遇?當我寫下這題目特定解時,突然發現還有許多有趣且可延伸的可能,因此開始研究;本篇研究透過求出甲乙相遇的每一個地點連接形成一個圓形,再藉由此圓形與題目中的正多邊形的點所畫的圓形的頂點相對位置,找出甲乙何時何地第一次相遇在正多邊形的頂點上,並導出通解並期望在未來可以找到不限定人數等等的延伸。

解構奧運會徽探討平面鑲嵌

觀察2020東京奧運會徽,發現圖形是由矩形組成,且矩形可經由三種元件(30°與150°的菱形、60°與120°的菱形、正方形)的各邊中點連線而成,本研究旨在利用這三種元件,探討平面鑲嵌。首先,找出利用元件拼貼一圈的組合個數,進一步向外擴增成正十二邊形,計算面積、對角線的長度,觀察旋轉之幾何變換,藉此得出拼貼成線對稱圖形時對稱軸上元件的擺放情形。接著,探討奧徽鑲嵌背景圖中不同大小正十二邊形的面積關係,並將線段變成曲線,推廣至拼貼成正n邊形的四邊形元件探討,得出如果n為偶數,則圖中的四邊形皆為菱形,且菱形的圈數為n/2-1,種類個數為⌈n/4-1/2⌉。最後,觀察類似奧徽之非平面鑲嵌頂點相接圖,改成用正方形貼接圖形,計算出邊長有1:√2的關係。

Wrong seating around the table

本研究探討在一場圓桌會議中,n人逐一亂序入場找尋各自對應的名牌編號(1~n號)入座,其中1號第一個入場並坐到了k號位,此後入場的人們若發現與自己編號相同的位置是空的,就直接入座;若與自己編號相同的位置被占走了,就以逆時針方向尋找空位入座。在上述的規則下,若共有n 人,且 1 號坐到 k號位的情況,給予與問題相關統計量的組合證明。後續本研究將規則改為1 ~ p號 按照順序進場且皆想坐到 k 號位的前提下,探討了坐錯的人們是怎麼樣的循環和坐錯人數的次數分佈。並多數的研究結果皆與 stirling numbers of the first kind 有相關。 本研究還 探討了共有 n 人,且 1 號坐到 k號位的情況下, 坐錯人數的標準差函數的遞增情況 與對數函數完全曲線相關。

Japanese triangle之探討與推廣

本作品在探討2023年IMO問題5中所提到的關於日式三角形(Japanese triangle)之問題,日式三角形是將1+2+...+n個圓排成正三角形的形狀,使得對所有i=1,2,...,n,由上往下數的第i列有i個圓,且每一列都有一個圓塗成紅色。日式三角形中的忍者路徑是一串由最上列到最下列的n個圓,其中每個圓連到其下一列與之相鄰的兩圓之一。我們分成兩個研究方向:一、找出k的最大值,保證在每一個日式三角形中,有一條包含至少k個紅色圓的忍者路徑。二、找出k的最小值,保證在每一個日式三角形中,有一條包含至多k個紅色圓的忍者路徑。 研究中,我們一般化每列的紅圓數為任意自然數𝓵(若該列總圓數不足𝓵則以該列總圓數塗色),並將問題推廣至空間三角垛的情形。最後,我們將𝓵=l的情形推廣至高維空間。

「飛到西飛到東」對應異頻穩定三角訊號之波形分析

本篇研究以探討多重訊號同時輸入時的訊號干擾問題出發,類比至國立臺灣師範大學數學系游森棚教授所提出的數學問題: 飛到西飛到東」,希望藉由導出多質點移動速率與其距原點間的位置關係,找出訊號重疊程度之峰值條件,藉此有望應用於硬體接收器的訊號輸出處理,或類比至電路設計與物流規劃等,達到避免相互干擾與提升傳輸效率的功用。 在內文中我們先以分段討論的方式解決期刊問題,並導出在任意系統中可快速辨別物體運動狀態之高斯函數。隨後以參數化曲線路徑與向量式的質點位置,拓展主題可適用範圍的自由度,再以高斯函數法和傅立葉級數法得出解型式之聯立組,最後利用數系之封閉性,將主題進一步約化處理。

雙向隨機生成數列的長度探討

本研究探討隨機生成數列的長度期望值。一個籤筒中有n支籤,編號分別為1,2,3,…,n,每抽出一支籤,就將抽取的編號寫在紙上,形成一個數列。數列只能向左右兩端添加項,不能從中插入。抽出的籤若大於目前數列的最大項,則將抽出的數寫在目前數列右邊;抽出的籤若小於目前數列的最小項,則將抽出的數寫在目前數列左邊;抽出的籤若介於目前數列的最小與最大項之間,則操作結束。基於此想法,研究者將數列依照添加項的方向分為「單向數列」與「雙向數列」兩類。顧名思義,單向數列只能向一端延伸(本研究不失一般性討論往右延伸),雙向數列代表可以向左右兩端延伸。此外,研究者又將數列分為「嚴格遞增減」和「非嚴格遞增減」兩類。在生成原理上,嚴格遞增減等價於「抽後不放回」;非嚴格遞增減等價於「抽後放回」。在這樣的規則下,本研究探討了n支籤抽完放回與不放回時,單雙向隨機生成數列的長度期望值之通解,並成功證明了一些恆等式及性質。