Evaluation of a fiber optic distributed temperature measurement system for a geothermal energy
As part of the European project GEOTHERMICA - ERA NET and in order to assess the capacity of heat storage in Switzerland, the Centre d'Hydrogéologie et de Géothermie de l'Université de Neuchâtel (CHYN) is taking part in the HEATSTORE project, launched in 2018. The latter is expected to lead to commercial heat storage projects in the near future in Geneva and Bern, in fractured aquifers. The evaluation of the geological characteristics of these aquifers is essential to understand the thermal energy transport processes of fractured aquifers. For this, it is necessary to be able to measure the temperature distribution along boreholes. Thus, the study focuses on the evaluation of a distributed temperature system (DTS) and its optical fiber in order to determine its operation, limits and potential for use in geothermal energy. Laboratory and field tests have been carried out that the water temperature deviation measurements, with a scan time of 30 s, are reliable at less than 0.5°C at +/-5 m over 500 m of fiber. For absolute temperature values, however, a bath and a reference probe must be used to recalculate the absolute temperature to within 0.5°C. The acquired data are essential for a broader understanding of the locations of fractured and karstified aquifers at Concise, allowing the system to be used to better understand the potential for water storage at a depth of 45°C at 35 m.
Air quality monitoring project as an educational tool for sustainable development
The research project has an extremely relevant topic - the creation of an air quality monitoring system for general secondary education. In the context of the Covid 19 pandemic, proper air sanitation is a determining factor in counteracting the spread of coronavirus infection. Special requirements for the procedure of systematic ventilation of educational premises are set before teachers and technical staff of schools "Sanitary Regulations for General Secondary Education Institutions", which is mandatory for implementation in general secondary education institutions. Together with measures to counter the Covid 19 pandemic, the new health regulations somewhat neglect resource conservation and energy efficiency issues: ventilation during the heating season can lead to wasteful heat losses. Monitoring the quality of air purification is simply necessary if teachers and parents care about creating a safe educational environment for students at school. Requirements for air safety determine and regulate its characteristics such as temperature, humidity, the presence of dust particles of different sizes, the concentration of carbon dioxide (CO2), carbon monoxide (CO) and formaldehyde vapors. The level of hazardous substances such as formaldehyde, which can be released from building materials, carbon monoxide and carbon dioxide, should be closely monitored in accordance with the recommendations of sanitary regulations and hygiene requirements of health care facilities. With increased concentrations of carbon dioxide above normal, the human body will experience the negative effects of hypoxia: poor health, drowsiness, decreased cognitive processes, learning becomes less effective. Carbon monoxide is a poisonous substance that can damage the body, poison hemoglobin and cause constant hypoxia of all organs and systems, long stay indoors with it leads to death. Formaldehyde causes carcinogenic effects, and the excess concentration of dust particles worsens the condition of people with allergies and bronchial asthma, as well as dust promotes bacterial growth and the spread of viral particles, which is especially dangerous in a coronavirus pandemic. Our solution allows for a transparent permanent monitor of air quality in the school, makes this monitoring completely inclusive - because any user from among the participants in the educational process has access to up-to-date information about the air in the school and can make informed decisions about proper behavior Our system allows students to become more responsible, independent in terms of sanitary requirements and compliance. Therefore, the main idea of our project is extremely relevant today - to organize a digitalized system for monitoring the quality of air purification in the school, thus preventing inadequate ventilation with wasteful heat loss and reduced energy efficiency of the school building. The project has signs of sustainability - it is in line with the Sustainable Development Goals – 3 «Good health and well-being», 4 «Quality education», 5 «Gender equality», 11 «Sustainable cities and communities», 12 «Responsible consumption and production» and 13 «Climate action»