HOPE WASTE (House Processor Waste) with IoT (Internet of Things) as a Laundry Liquid Waste Treatment Household Environment
Washing is one of the things that must be done by every household. Rural and urban communities have to wash clothes every day, to get clean clothes so they can be reused. But it turns out that with many households doing this activity, it will cause side effects that are not good. The impact will worsen the quality of the surrounding water because this activity is not equipped with a waste treatment process, but instead is dumped directly into the nearest ditch or river. As a result, this waste causes water pollution. The chemical compositions contained in detergents are grouped into 3, namely surface active substances ranging from 20-30%, reinforcing agents are the largest detergent components ranging from 70-80% and other ingredients around 2-8%, where surfactants are the main ingredients. cleaning agent in detergent. If not managed properly, it will cause environmental problems in the future. This research was carried out for 4 months at MAN Sidoarjo and Brawijaya University. The research method used was research and development and experiment methods, and data collection techniques using the observation method. From these problems, we offer a solution by making an internet of things-based device which we call HOPE WASTE (House Processor Waste) with IoT (Internet of Things) as the processing of household laundry liquid waste. HOPE Waste is a house-shaped device that functions to treat Laundry Liquid Waste which combines electrocoagulation methods and utilizes Biosorbents, namely Barringtonia Asiatica and Activated Charcoal which are made into powder. Where the Biosorbent content can bind chemicals in laundry liquid waste so that we can combine them using environmentally friendly IoT-based electrocoagulation methods.
Evaluation of a fiber optic distributed temperature measurement system for a geothermal energy
As part of the European project GEOTHERMICA - ERA NET and in order to assess the capacity of heat storage in Switzerland, the Centre d'Hydrogéologie et de Géothermie de l'Université de Neuchâtel (CHYN) is taking part in the HEATSTORE project, launched in 2018. The latter is expected to lead to commercial heat storage projects in the near future in Geneva and Bern, in fractured aquifers. The evaluation of the geological characteristics of these aquifers is essential to understand the thermal energy transport processes of fractured aquifers. For this, it is necessary to be able to measure the temperature distribution along boreholes. Thus, the study focuses on the evaluation of a distributed temperature system (DTS) and its optical fiber in order to determine its operation, limits and potential for use in geothermal energy. Laboratory and field tests have been carried out that the water temperature deviation measurements, with a scan time of 30 s, are reliable at less than 0.5°C at +/-5 m over 500 m of fiber. For absolute temperature values, however, a bath and a reference probe must be used to recalculate the absolute temperature to within 0.5°C. The acquired data are essential for a broader understanding of the locations of fractured and karstified aquifers at Concise, allowing the system to be used to better understand the potential for water storage at a depth of 45°C at 35 m.