全國中小學科展

地球與環境科學

護「灘」神「扇」— 風扇擾流應用於延緩突堤效應

本研究以維繫現今環境,使人類保有生存優勢為前提,旨在探討於海水面下裝設風扇,藉風扇擾流改變沿岸流所挾帶漂沙之沉積分布,延緩突堤效應造成之負面影響。研究先以煙霧觀測五葉、七葉及九葉風扇擾流情形,再透過水流及螢光沙模擬安平商港外海,取得裝設各風扇後漂沙沉積變化過程。除可用於預測近表層沿岸流沉積外,也可套用於海底恆流。未來期望針對流量、流速與地形坡度等作出量化數據,以求得函數模型。另外,亦期望發展洋流發電、綠色能源等各種應用。

平流層極地渦旋及北極震盪與區域極端寒冷事件之關係

本研究使用NOAA NECP Reanalysis Data 2000年~2020年冬季之緯向風、重力位高度場及其距平變化,探討北極震盪指數(AOI)、極地渦旋對北半球區域極端寒冷事件之關係。AOI與對流層300hPa北緯50~65度緯向平均之緯向風速變動關係較顯著,而與平流層(50hPa)極地渦旋的緯向風速變動僅呈現中度正相關。在太平洋區中,極端寒冷事件發生在AO負相位的比例最高,不過,極端寒冷事件不必然僅發生在AO負相位的大氣條件下,而是與極區的重力位高度場變動有關,且可能發生延遲影響。當極區平流層(50hPa~100hPa)或極區對流層(300hPa~500hPa)的週平均重力位高度距平值明顯上升,代表極地渦旋發生變化,大多有伴隨有極端寒冷事件的出現,即使處於AO正相位的情況亦然,本文對於區域極端寒冷天氣事件之重力位高度場特徵做歸納與說明。

蘭陽溪口溼地以及五十二甲溼地水質分析與比較

本研究區域為蘭陽溪口溼地與五十二甲溼地,各選擇5和6個採樣點,檢測水體中的溶氧度、pH值、導電度、總固體溶解量(TDS)、水溫以及濁度並記錄當時氣溫。 在蘭陽溪口溼地中我們發現越靠近出海口,導電度、TDS越高。採樣點4濁度為最高,猜想可能與位置有關。五十二甲溼地中則以採樣點6的導電度、TDS為最高,濁度、pH值及溶氧量則是採樣點3最高。我們還藉由五十二甲濕地分區使用圖,比較人為因素對水質的影響。採樣點3為遊客休憩區,測得的濁度、pH值皆較高,採樣點6為生態區,測值相對較小,推測人為因素與水質有關聯。最後,在10月10日的數據中,發現蘭陽溪口溼地的導電度特別高,推測潮汐現象為可能造成此現象的因素,也是未來研究的方向。

Air quality monitoring project as an educational tool for sustainable development

The research project has an extremely relevant topic - the creation of an air quality monitoring system for general secondary education. In the context of the Covid 19 pandemic, proper air sanitation is a determining factor in counteracting the spread of coronavirus infection. Special requirements for the procedure of systematic ventilation of educational premises are set before teachers and technical staff of schools "Sanitary Regulations for General Secondary Education Institutions", which is mandatory for implementation in general secondary education institutions. Together with measures to counter the Covid 19 pandemic, the new health regulations somewhat neglect resource conservation and energy efficiency issues: ventilation during the heating season can lead to wasteful heat losses. Monitoring the quality of air purification is simply necessary if teachers and parents care about creating a safe educational environment for students at school. Requirements for air safety determine and regulate its characteristics such as temperature, humidity, the presence of dust particles of different sizes, the concentration of carbon dioxide (CO2), carbon monoxide (CO) and formaldehyde vapors. The level of hazardous substances such as formaldehyde, which can be released from building materials, carbon monoxide and carbon dioxide, should be closely monitored in accordance with the recommendations of sanitary regulations and hygiene requirements of health care facilities. With increased concentrations of carbon dioxide above normal, the human body will experience the negative effects of hypoxia: poor health, drowsiness, decreased cognitive processes, learning becomes less effective. Carbon monoxide is a poisonous substance that can damage the body, poison hemoglobin and cause constant hypoxia of all organs and systems, long stay indoors with it leads to death. Formaldehyde causes carcinogenic effects, and the excess concentration of dust particles worsens the condition of people with allergies and bronchial asthma, as well as dust promotes bacterial growth and the spread of viral particles, which is especially dangerous in a coronavirus pandemic. Our solution allows for a transparent permanent monitor of air quality in the school, makes this monitoring completely inclusive - because any user from among the participants in the educational process has access to up-to-date information about the air in the school and can make informed decisions about proper behavior Our system allows students to become more responsible, independent in terms of sanitary requirements and compliance. Therefore, the main idea of our project is extremely relevant today - to organize a digitalized system for monitoring the quality of air purification in the school, thus preventing inadequate ventilation with wasteful heat loss and reduced energy efficiency of the school building. The project has signs of sustainability - it is in line with the Sustainable Development Goals – 3 «Good health and well-being», 4 «Quality education», 5 «Gender equality», 11 «Sustainable cities and communities», 12 «Responsible consumption and production» and 13 «Climate action»

Bio-Circular-Green Superabsorber

As the world has become concerned about the global waste crisis and global warming, there has been a surge of research within materials science to find materials that would replace plastic, such as bioplastics or biodegradable materials, in order to reduce environmental pollution. Plastics generates the microplastics that allowed them to become cross contamination enter the ocean through land, sea and river. Science research found (Lusher et al. (2017)) over 220 species of marine animals ingested microplastic, half of them are considered relevant for commercial purpose and increasing the risk of human consumption as it can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. Thailand is also experiencing such a challenge, as seen by the overabundance of plastic waste that might take centuries to decompose. For example, around 1680 million personal hygiene products such as diapers, sanitary napkins, and tampons are used each year. This study highlights the use of naturally accessible absorbent fibers from malva nut (Scaphium scaphigerum) (G. Don) Guib & Planch.), which is widely available and biodegradable in nature and has a low carbon footprint. This study also aimed to develop natural absorbent pads using compostable spun, external layers, and biodegradable glue. A prototype sanitary napkin with biodegradable absorbent pads was developed and evaluated for absorption ability, absorption rate, pH, and biodegradability. The absorbent material absorbed up to 19 times its weight in 2 minutes and 33 times its weight in 2 hours, which is enough for an average of 80-150 mL of menstrual blood. The prototype napkin deteriorated within 99 days, based on naked eye observation. Some signs of degradation and microorganisms growing on the prototype were also observed from scanning electron microscopic images. According to the findings, natural absorbent pads made from malva nut have the potential to be converted into sanitary napkins. Furthermore, it is proposed that the components, which include superabsorbent renewable materials, spinning compostable layer, external compostable layer and biodegradable glue, may be used in a variety of goods, including adult diaper pants, incontinence pads, and laboratory bench mats.

Bio-Circular-Green Superabsorber

As the world has become concerned about the global waste crisis and global warming, there has been a surge of research within materials science to find materials that would replace plastic, such as bioplastics or biodegradable materials, in order to reduce environmental pollution. Plastics generates the microplastics that allowed them to become cross contamination enter the ocean through land, sea and river. Science research found (Lusher et al. (2017)) over 220 species of marine animals ingested microplastic, half of them are considered relevant for commercial purpose and increasing the risk of human consumption as it can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. Thailand is also experiencing such a challenge, as seen by the overabundance of plastic waste that might take centuries to decompose. For example, around 1680 million personal hygiene products such as diapers, sanitary napkins, and tampons are used each year. This study highlights the use of naturally accessible absorbent fibers from malva nut (Scaphium scaphigerum) (G. Don) Guib & Planch.), which is widely available and biodegradable in nature and has a low carbon footprint. This study also aimed to develop natural absorbent pads using compostable spun, external layers, and biodegradable glue. A prototype sanitary napkin with biodegradable absorbent pads was developed and evaluated for absorption ability, absorption rate, pH, and biodegradability. The absorbent material absorbed up to 19 times its weight in 2 minutes and 33 times its weight in 2 hours, which is enough for an average of 80-150 mL of menstrual blood. The prototype napkin deteriorated within 99 days, based on naked eye observation. Some signs of degradation and microorganisms growing on the prototype were also observed from scanning electron microscopic images. According to the findings, natural absorbent pads made from malva nut have the potential to be converted into sanitary napkins. Furthermore, it is proposed that the components, which include superabsorbent renewable materials, spinning compostable layer, external compostable layer and biodegradable glue, may be used in a variety of goods, including adult diaper pants, incontinence pads, and laboratory bench mats.

自製模型模擬地震對地球自轉速率變化之探討

為了解地震對地球自轉速率變化之影響,本研究使用自製地球模型、模擬板塊裝置,並運用 Tracker 等程式,模擬地震後地球自轉變化情形。 自製地球轉動時角速度有週期變化,可當作模擬地震發生的背景資料。研究結果顯示,加重板塊負重,角速度無明顯變化趨勢,但自轉一圈所需時間皆增加。改變板塊位置,北緯 22.5 度組角速度圖形高峰值及振幅顯著增加,赤道、北緯 45 度組變化則不明顯。 板塊移動與球體旋轉同向時,角速度變化振幅明顯加大,反向則不明顯。在角速度相對小時移動板塊,角速度趨勢往下,平均角速度減少;反之,在角速度相對大時移動板塊,角速度趨勢往上,平均角速度增加。 本模型模擬之地震所引發之日長改變量,經由換算相當於自轉週期 24 小時的地球改變了 36 分鐘。

HOPE WASTE (House Processor Waste) with IoT (Internet of Things) as a Laundry Liquid Waste Treatment Household Environment

Washing is one of the things that must be done by every household. Rural and urban communities have to wash clothes every day, to get clean clothes so they can be reused. But it turns out that with many households doing this activity, it will cause side effects that are not good. The impact will worsen the quality of the surrounding water because this activity is not equipped with a waste treatment process, but instead is dumped directly into the nearest ditch or river. As a result, this waste causes water pollution. The chemical compositions contained in detergents are grouped into 3, namely surface active substances ranging from 20-30%, reinforcing agents are the largest detergent components ranging from 70-80% and other ingredients around 2-8%, where surfactants are the main ingredients. cleaning agent in detergent. If not managed properly, it will cause environmental problems in the future. This research was carried out for 4 months at MAN Sidoarjo and Brawijaya University. The research method used was research and development and experiment methods, and data collection techniques using the observation method. From these problems, we offer a solution by making an internet of things-based device which we call HOPE WASTE (House Processor Waste) with IoT (Internet of Things) as the processing of household laundry liquid waste. HOPE Waste is a house-shaped device that functions to treat Laundry Liquid Waste which combines electrocoagulation methods and utilizes Biosorbents, namely Barringtonia Asiatica and Activated Charcoal which are made into powder. Where the Biosorbent content can bind chemicals in laundry liquid waste so that we can combine them using environmentally friendly IoT-based electrocoagulation methods.

HOPE WASTE (House Processor Waste) with IoT (Internet of Things) as a Laundry Liquid Waste Treatment Household Environment

Washing is one of the things that must be done by every household. Rural and urban communities have to wash clothes every day, to get clean clothes so they can be reused. But it turns out that with many households doing this activity, it will cause side effects that are not good. The impact will worsen the quality of the surrounding water because this activity is not equipped with a waste treatment process, but instead is dumped directly into the nearest ditch or river. As a result, this waste causes water pollution. The chemical compositions contained in detergents are grouped into 3, namely surface active substances ranging from 20-30%, reinforcing agents are the largest detergent components ranging from 70-80% and other ingredients around 2-8%, where surfactants are the main ingredients. cleaning agent in detergent. If not managed properly, it will cause environmental problems in the future. This research was carried out for 4 months at MAN Sidoarjo and Brawijaya University. The research method used was research and development and experiment methods, and data collection techniques using the observation method. From these problems, we offer a solution by making an internet of things-based device which we call HOPE WASTE (House Processor Waste) with IoT (Internet of Things) as the processing of household laundry liquid waste. HOPE Waste is a house-shaped device that functions to treat Laundry Liquid Waste which combines electrocoagulation methods and utilizes Biosorbents, namely Barringtonia Asiatica and Activated Charcoal which are made into powder. Where the Biosorbent content can bind chemicals in laundry liquid waste so that we can combine them using environmentally friendly IoT-based electrocoagulation methods.

搶救海洋紅寶石(藻礁)-運用AI視覺辨識無人機對藻礁保育之預警研究

本研究以水質對於藻礁的影響以及設計協助保育藻礁之無人機作為研究目標,藻礁是重要的地球資產,目前全世界藻礁數量岌岌可危,了解藻礁所適合的環境與水質指標,有助於保育以及維護藻礁生態,因此我們使用AI人工智慧技術,製作出AI視覺辨識飛行藻礁監測無人機,經過研究以及實驗,我們發現: 一、藻礁的生態環境以及藻礁對於海洋生物以及人類的重要性 二、石灰藻類對於海水水質變化的影響 同時實驗與測試也證明了我們的AI系統可以達到: 一、確實幫助人們觀察與研究藻礁 二、能夠有定期紀錄藻礁以便研究 三、對藻礁破壞與否進行辨識和提供預警 期望本研究能讓更多人一起關注並認識藻礁,並且增加AI技術的用途,讓這個海洋的紅寶石生生不息。