Microfossil association of the Štíty locality
My thesis focuses on studying Cretaceous microfossil specimens from the excavation of former brickworks in Štíty, especially foraminifera. In the theoretical part, I have covered the structure of the Bohemian Cretaceous Basin area, especially Bystřice Lithofacial Development. I have also processed previous paleontological researches from the locality. Emphasis was placed on field research and subsequently on laboratory research of the site. I have examined the present state of the location and gathered samples of silt clay containing a wide variety of fossils. I have acquired the microfossils, determined them, and ordered them systematically. The most important part of the thesis is the systematic and palaeoecological processing of the collection of microfossils from the locality. The thesis continues the research of the last year of SOČ, where I have gathered a collection of fossil macrofauna, flora, and ichnofauna. My collection is supplemented mainly by benthic and planktonic foraminifers. I have confirmed that the specimens found are typical representatives of marine fauna belonging to the Upper Cretaceous Coniacian. The paleoecological characteristics of the locality correspond to a nutrient-rich shallow-water environment, occasionally disturbed by storm waves.
Removal of Nutrients by Chlorella Vulgaris Microalgae in Bandar Abbas Municipal Wastewater
The entry of nutrients into the environment can cause the creation of eutrophication of aquatic ecosystems. One of the methods of removing nutrients from effluents is the use of algae. Algal purification is a new and inexpensive technology for this purpose. The present study investigated the rate of cell growth and nutrient removal of urban wastewater in Bandar Abbas in winter 2020 by the Chlorella vulgaris microalgae in the phycolab of Fisheries Research. Treatments with different dilutions (0%, 25%, 50% and 75%) were prepared; in addition, specific growth rate, cell density and removal efficiency of phosphate, nitrate, nitrite were examined during a 14 day period with initial constant density (1×10⁶ cells / ml ) of microalgae. The results indicated that 0% and 75% dilution had the highest and lowest cell densities (8.675×10⁶ and 56.633×10⁶), respectively; moreover, they had the specific growth rate (0.166 and 0.311). Furthermore, there was a significant difference between them (P≥ 0.05). The highest nitrate and nitrite removal efficiencies were -40.75 and -79.84 in effluent dilution of 50%; in addition, the lowest were 1.26 and -40.26 in dilution of 75% and 25% respectively. Phosphate had the highest removal efficiency at 0% dilution with a mean of -79.65 that showed a significant difference with the lowest at 25% dilution (P≥ 0.05). Therefore, high or low levels of nutrients can affect the removal efficiency and growth rate of microalgae.
Chlorella vulgaris chlorophyll a fluorescence as a potential indicator for zinc and nickel detection
Heavy metals contaminate many bodies of water, posing a health risk to not only organisms that live and use the water in these areas, but also to the humans that live nearby. Chlorella vulgaris, a microalga, is one organism whose chlorophyll a fluorescence can indicate the presence of these substances, detecting any changes in concentrations using fluorescence microscopy and other fluorescence devices. The study explores the sensitivity of C. vulgaris to the heavy metal zinc where the algae was exposed to five concentrations of zinc: 0 ppm, 5 ppm, 10 ppm, 50 ppm, and 100 ppm. The fluorescence of the samples was observed with a fluorescence microscope on days 0, 4, 7, and 12, where the algal samples were adapted to the dark for 5 minutes, then exposed to light for 90 seconds. The values of the minimal and maximal fluorescence of the samples in the dark were noted. There is a significant difference in the values of the minimal fluorescence, maximal fluorescence, and maximum quantum yield, a value derived from the minimal and maximal fluorescence, at the highest concentration, 100 ppm, from the other treatments for the entirety of the experiment. The significantly low values at 100 ppm and the calculated EC50 of 75.70 ppm indicate that C. vulgaris is indeed a viable indicator for zinc detection at this and higher concentrations of zinc.
STUDY OF ATMOSPHERIC AIR POLLUTION OF POLTAVA REGION
Ukraine as a whole, as well as Poltava Region in particular, have a problem with the state of atmospheric air pollution, because the vast majority of motor vehicles and industrial, energy, and mining enterprises are not equipped with proper cleaning filters. A clear confirmation of the ineffectiveness of Ukraine in matters of monitoring the condition and protection of the atmosphere, in comparison with European countries, was the scandal with the manipulation of exhausts of the Volkswagen concern (Dieselgate). Diesel engines use a catalyst with injection of a urea solution (AdBlue), or a catalytic converter built on the principle of accumulation of nitrogen oxides on a metal surface made of barium compounds . Synthetic urea in automotive catalysts transforms dangerous nitrogen oxides into harmless nitrogen and water . However, due to the software, during everyday use of the VW engines in question, this function remained disabled and the catalytic converter was simply removed. However, we see such cars, along with others, even more morally and technically outdated, on the roads of Ukraine every day. The practice of burning stubble in spring and autumn also leads to extreme consequences of air pollution. The morally outdated system of monitoring the state of the atmosphere, which has remained in Ukraine since Soviet times, is not able to show the real state of pollution, and the lack of proper control on the part of the state leads, in general, to the worsening of the situation every year. Environmental problems in the country in general, and in Poltava Oblast in particular, are the cause of the spread of cancer and high human mortality. Almost 80,000 people die of oncology in the country every year. According to 2020 data, the mortality of the population of Poltava Oblast from non-communicable diseases exceeds the average indicators for Ukraine: Ukraine – 1,597 people per 100,000 population, Poltava Oblast – 1,793 people per 100,000. Therefore, the relevance of the problem raised is extremely high, and it is necessary to start with monitoring air pollution and raising the problem at the national level, because most of the country's residents do not even know what kind of air they breathe at home and on the street.