全國中小學科展

環境工程

探討石油與細菌的故事—加「塑」分解

本研究想透過能分解石油的嗜油菌加速同為碳氫構成的塑膠分解。本實驗採用參雜一般塑膠的生物可分解塑膠片。從含有油污的土中經過DNA分離與純化後透過NCBI比對出主要菌種為Pseudomonas citronellolis和Achromobacter。菌種與經實驗室紫外光照射24小時的塑膠片反應時重量下降幅度最大,經約含7%紫外線的太陽光照射3天的塑膠片次之,無前處理的塑膠片最小。本實驗透過三種堆肥方式研究塑膠片分解的情形,在加入菌種和碳基生物復育劑的土中反應的塑膠片重量下降幅度最大,加入碳基生物復育劑的土中的塑膠片次之,加入自來水的最小。從塑膠片殘留重量比與實驗天數畫出的折線圖中可看出若維持經實驗室紫外燈照射24小時且在加入菌種和碳基生物復育劑的土內反應的塑膠片重量下降趨勢便能在883天後完全分解。此外,在探討不同酸鹼值的實驗中,可知pH10的分解最快,而含沙量實驗中則可得知含沙量0%對分解對有利。未來預計長期研究嗜油菌與一般塑膠的分解及不同有機質對塑膠分解的影響,期望解決塑膠過量的問題,使環境不受影響。

Revolutionizing Potato Agriculture: Harnessing Machine Learning Techniques for Disease Detection and Management

Aim: The aim of this study is to make a disease-predicting model trained on data from weather stations and API using machine learning that gives the farmer the ability to predict crop diseases before they set in, allowing them to take timely preventative measures and reduce wastage. Materials and Methods: In this study the Internet of Things (IoT) sensors throughout agricultural fields of potato crops in Jafferabad, Depalpur Punjab. The sensors collect real-time data on environmental conditions, such as precipitation, air temperature, relative humidity, wind speed, and direction, Dew Point, VPD, and the Delta T values, to identify subtle disease indicators and patterns within the environmental data. Our novel machine-learning program makes use of the data collected by the weather station and analyses them. Results: Using the data, one predictive statistical method using Python 3.8.0 was created which uses the data from the weather station which can predict diseases before they set in.

Nanoparticles and Aqueous Amine-Based Formulation to Develop CO2 Foam for Sequestration and Oil Recovery

Carbon dioxide (CO2) is an important greenhouse gas that helps trap heat in our atmosphere; without it, our planet would be inhospitably cold [1]. It is the fourth most abundant gas in the Earth's atmosphere. It is a byproduct of normal cell function when breathed out of the body, and produced when fossil fuels and organic wood compounds are burned [2]. However, an increase in CO2 concentration in the atmosphere can contribute to climate change and ocean acidification, and exposure to high levels of CO2 can produce a variety of health effects [3]. Human progress and economic innovation have led to increased emissions, causing climate change and affecting all living creatures. Current levels are 36.8 Gt CO2 in 2023 and are expected to reach 54-56 Gt CO2 by 2030 [4]. Figure 1 displays the current atmospheric CO2 measurements at Mauna Loa Observatory without seasonal variations [5].

快速合成金屬有機骨架複合材料用於微量工業廢氣吸附移除Rapid synthesis of metal-organic framework composites for removal of trace industrial waste gases

本研究開發一種新穎孔洞性吸附材料:金屬有機骨架 (MOF)。MOF 在反應溶液中自組裝形成孔洞結構,透過物理吸附有效捕捉氣相乙酸分子。研發出綠色、快速可在常溫常壓下大量合成三種MOF(HKUST-1(Cu)、UTSA-280(Ca) 及 A520(Al))方法。此外,為提升材料機械強度和應用價值,採用 PVA 聚合技術製備 MOF 複合物,使其造粒型化更易處理,提升商業和環境應用價值。吸附實驗結果顯示,HKUST-1(Cu) 粉末對乙酸移除率高達98%,而HKUST-1(Cu) PVA 複合物達93%,對比活性碳及其PVA複合物(移除率分別為85%和78%)表現更優異。MOF憑藉優異吸附性能和可大量生產低成本優勢,成為極具潛力有機無機氣體吸附劑,可為半導體產業提供一種維持高標準製程環境精密且簡便解決方案。

奈米 MPC 材料應用於電阻式有機氣體感測器

工業環境中揮發性有機化合物(VOCs)的洩漏不僅危害人體健康,更可能導致工安事故。現有氣體感測器常存在選擇性低、反應時間長等限制。本研究開發高選擇性與快速反應的奈米材料導電式氣體感測器,以實現即時監測。 研究中合成並測試六種銀奈米 (Ag-MPC)材料:Ag@C6、Ag@C12、Ag@C16、Ag@MCP、Ag@C12/MCP及Ag@C12/MBT複合材料。在500-5000 ppm濃度範圍內偵測1-丁醇、正辛烷及間二甲苯等目標氣體的電阻變化。實驗結果顯示,Ag@C12經官能基修飾後,對1-丁醇具有明顯的選擇性。我們開發基於Arduino微控制器的即時監測系統,透過運算放大器電路實現高精度的電阻變化檢測。可以在工業環境中持續監測VOCs濃度並即時示警。未來將著重於優化訊號放大電路、開發新型官能基修飾材料、實現複雜氣體混合物的組分分析。開發成本低、反應快、選擇性好的感測系統,為工業安全監測領域提供實際應用價值。

微生物燃料電池結合外加磁場與TiO2海綿--對於提升產電與柴油降解效率之潛能評估

柴油汙染已然造成嚴重的生態危機,我們藉由微生物快速生長與代謝有機物的特性,結合MFC解決油汙。將自製PVB-TiO2海綿加入MFC陽極反應室中,在兩側添加釹磁鐵形成外加磁場。為提升MFC代謝柴油效能,我們探討MFC電極種類、PVB-TiO2海綿的TiO2添加濃度、磁鐵數量與方向等參數。結果顯示,添加PVB-TiO2海綿(12 g/L)及外加相斥兩顆磁場,對COD降解率、平均輸出電壓、VFA代謝產量與柴油降解率,較未添加組有最顯著提升。分別達成COD降解率增為1.4倍、平均輸出電壓增為1.8倍、柴油降解率增為2.0倍之效果。預期本實驗未來能對柴油汙染提供解方,降低柴油洩漏對環境的衝擊。

智慧蚊監-3D 列印與機器學習

氣候變遷加劇了蚊媒疾病對全球公共衛生的威脅,迫切需要創新的解決方案。在台灣,登革熱的傳播主要由蚊蟲滋生所致。為了解決此問題,我們設計了一款三層結構的3D 列印誘蚊器,包括吸引懷孕雌蚊產卵的誘餌層、捕捉蚊蟲的黏膠層,以及防止異物進入的保護層。該裝置成本低、易製作且不需要外部電力,特別適合在資源有限的地區部署。 我們結合校園監測站每日捕捉的蚊蟲數據與氣象站提供的溫度、濕度和降雨等環境數據,運用SARIMA 與隨機森林混合模型進行分析與預測。SARIMA模型負責捕捉蚊蟲數量的季節性與長期趨勢,而隨機森林模型則處理環境變數與蚊蟲密度之間的非線性關係。此混合模型不僅提高了預測精度,還能解析蚊蟲的生態模式,進一步指導誘蚊器的最佳配置。此外,我們還開發了紅外線感測系統,即時偵測蚊蟲活動,為監測提供精準數據。 為評估氣候變遷的影響,我們模擬了不同全球暖化情境下的蚊蟲密度變化趨勢。結果顯示,隨著溫度上升,蚊蟲密度呈現非線性收斂趨勢,但正相關性依然存在,強調了氣候變遷可能帶來的潛在危害。我們還開發了一個網站,用於即時呈現蚊蟲密度預測,幫助政策制定者和公共衛生機構有效應對疾病防控挑戰。 本研究與聯合國永續發展目標(SDGs)中的SDG3(良好健康與福祉)及SDG13(氣候行動)高度契合,展示了結合3D列印、機器學習、即時感測和網路技術應對蚊媒疾病的創新潛力。此系統提供了一個可持續的全球蚊蟲控制模型,為公共衛生、疾病預防及流行病學的未來創新奠定了堅實基礎。

Anti-forma Chitogel

Formaldehyde is an air-borne, carcinogenic indoor pollutant. It may cause adverse effects on human health such as irritation of eyes and respiratory system. Shells of hermetia illucens, Black Soldier Flies (BSF) are leftovers when the insects mature from pupae to adults. BSF shells are rich in chitin which can be converted into chitosan by demineralisation and deacetylation. Chitosan and its ammonium salt (chitogel) can remove formaldehyde via condensation of water. In this investigation, the efficiency of removal of formaldehyde by different substrates were compared including shells of BSF before and after demineralization, deacetylation and action of vinegar; and common commercial products and Anti-Forma Chitogels made from shells of BSF and some crustaceans. Anti-Forma Chitogel of BSF was found to be effective in removing (91.2%) formaldehyde (1:20 by mass) among shells of BSF with different treatments and its efficiency was better than all commercial products tested. Concentration of formaldehyde in the container with deacetylated Anti-Forma Chitogel is 0.54 mg/m3. It removed 74.8% of formaldehyde compared to the control (2.14 mg/m3). Concentration of formaldehyde in the container with Anti-Forma Chitogel without deacetylation is 0.76 mg/m3 . It removed 64.5% of formaldehyde compared to the control (2.14 mg/m3). The Anti-forma Chitogel of BSF was found to be eco-friendly with high formaldehyde removal efficiency when placed in a drawer (removal of 54.8% of in 24 hours), the chamber of a newly renovated room (removal of 84.9% in 30 minutes reducing the conc. of formaldehyde from 0.53 mg/m3 to 0.08 mg/m3; cf. the safety limit of formaldehyde <0.125mg/m3) and drawers of a new wardrobe (removal of 83.7% at 20.2oC in 1 day reducing the conc. of formaldehyde from 0.49 mg/m3 to 0.08 mg/m3 & kept the conc. of drawers below 0.125mg/m3 most of the time over a month when temperature was below 21oC). Conc. of formaldehyde in air-tight boxes (5g of construction adhesive in 9.3 dm3) with air purifiers with and without Anti-forma Chitogel as filter before and after 3 hours was reduced by 44.5% (from 6.25mg/m3 to 3.47mg/m3 ) and 27.7% respectively showing that Anti-forma Chitogel as filter in air purifier outperformed that without by 160%. Besides, anti-forma Chitogel is antibacterial, so it would also kill bacteria when used in air purifiers. [1] proving that Anti-forma Chitogel is effective in removal of formaldehyde on the spot and can be applied to households. It can also help achieve Target 3.9 and 12.5 of the Sustainable Development Goals of the United Nations.

快速合成金屬有機骨架複合材料用於微量工業廢氣吸附移除Rapid synthesis of metal-organic framework composites for removal of trace industrial waste gases

本研究開發一種新穎孔洞性吸附材料:金屬有機骨架 (MOF)。MOF 在反應溶液中自組裝形成孔洞結構,透過物理吸附有效捕捉氣相乙酸分子。研發出綠色、快速可在常溫常壓下大量合成三種MOF(HKUST-1(Cu)、UTSA-280(Ca) 及 A520(Al))方法。此外,為提升材料機械強度和應用價值,採用 PVA 聚合技術製備 MOF 複合物,使其造粒型化更易處理,提升商業和環境應用價值。吸附實驗結果顯示,HKUST-1(Cu) 粉末對乙酸移除率高達98%,而HKUST-1(Cu) PVA 複合物達93%,對比活性碳及其PVA複合物(移除率分別為85%和78%)表現更優異。MOF憑藉優異吸附性能和可大量生產低成本優勢,成為極具潛力有機無機氣體吸附劑,可為半導體產業提供一種維持高標準製程環境精密且簡便解決方案。

ReCiPla - Cyclic Soil Microplastic Remover

GROSSMANN, João Miguel Sastre. ReCiPla - Cyclic Soil Microplastic Remover: A way to remove microplastics from soil using electrostatics. 2023. 28 p. Research report – Scientific Apprentice Program, Colégio Dante Alighieri, São Paulo, 2023. Microplastics are the largest form of physical pollution on the planet. Affecting everything from terrestrial and aquatic environments to the air, compounds up to 1 micrometer in size are present inside the human body and can intoxicate the main organs in which they are found, such as the lungs, spleen, liver, and heart. Therefore, methods of removing these compounds from nature are essential, which is why this research is based on electrostatically removing MP from the soil. To this end, a vibrating conveyor belt was designed that would act in conjunction with a plate electrified by a Van de Graaff generator to separate the plastic compound using electric field induction. After characterization tests to quantify the voltage produced by the generator, which produced an average of 95 kV, the vibrating belt was made and will be used later in conjunction with the electrostatic method. This methodology suggests that it’s a success even after the electrified plate was applied to its structure. It carried out the proposed processes, such as moving the test masses, vibrating them, and fully supporting the electrified plate. In addition, the electrostatic removal method was tested to verify its efficiency and applicability. It was found that the removal of microplastics ranged it from 10 to 20% efficiency, suggesting it to be an effective method for separating microplastics. It should be noted that these statistics will be improved as the research progresses. In this way, the research proved capable of establishing an electrostatic removal method, as well as a process for transporting the material to be removed, thus achieving the objectives it set out to achieve. Finally, it should be noted that this research is still under development, with a view to applying the process in conjunction with the conveyor belt to carry out sample tests, as well as improving the removal process in the future to make it more efficient.