"turn" -on (free food and renewable energy )
Nowadays Electric energy is the most useful in the world because we use it every day for lightening, work, entertainment ext … but electric energy also can be expensive and it will pollute the air plus we all know that the air pollution is getting worse. Our world consumes a huge amount of electric energy . Also we know that the homelessness is getting higher all around the globe and it reached a high percentage. The high price and the sudden cut of the electric energy and with it the air pollution makes a big problem. That’s why we created this project named TURN ON which is a friend of the environment and a friend of the humans. Our product will help us to produce and create strong, clean and renewable energy plus it will help the homeless to have free food and free transport tickets. After doing a lot of researches we found that our new method of producing energy gives a great electric energy and limit pollution. The kinetic energy is produced using rotations. That’s why we used the rotations of motorbikes, bicycles, cars wheels and turn that mechanical energy (wm) into electrical energy (we) that we can easily use in our daily life plus we can help homeless by giving them food widgets… in exchange with the electrical energy that they produced while using bicycles…After performing several tests and taking notes, we are able to conclude that our apparatus is indeed efficient as it is able to convert the rotation into electronic energy that we can store and use in emergencies to solve this big problem and in the same time to limit air pollution with using bicycles and reducing hunger regarding homeless. This machine should be easy to implement, cheap, does not depend on any other parameters such as the wind. Any rotation in any place can be a source of Electrical Energy. To facilitate the use of this new device, A START UP will be launched to rent electric bikes for “free”, distribute free food, snacks, tickets to homeless regarding to the energy production.
A STUDY ON TRADITIONAL ARCHITECTURE IN ITANAGAR CAPITAL COMPLEX AND TO IMPROVE A MODIFIED TYPOLOGY FOR A CLIMATE RESPONSIVE CONTEMPORY HOUSE
The lifestyle of the Arunachal Pradesh rural population demonstrates the example of sustainable living where bamboo plays a major role. Bamboo has its home in this tropical climate region of India. In order to understand various aspects of traditional bamboo constructions, a field visit was made to Rono, Emchi, Lekhi villages and Karsingsa, Pachin, NEEPCO areas. The paper studies the patterns affecting the housing styles of these regions, the traditional method of construction including bamboo treatments. Various parameters which are required to be considered for constructing a house are also studied. It has been found in the field survey that the utilization of bamboo is mostly in wall panels, columns, floor, door and windows. The question posed here is whether tradition houses perform better than a typical contemporary house in creating comfortable internal conditions. And if they do how it is possible for the contemporary house to benefit from the advantages presented in the design of the traditional house in terms of thermal performance. The results indicate that improved performance might be achieved by combining selected lessons from the traditional design e.g. improved shading, regional variations in window size related to orientation and adoption of adjustable ventilation and window openings.
A 100% Solar Electric Vehicle: Applying high efficiency solar modules in sustainable transport
As our planet suffers the effects of climate change, it is only a matter of time before society will have to centre all aspects of development around sustainability. In the past, clean solutions for transportation have been dismissed due to the higher cost, and lower efficiency than fossil fuels. However, in the past few decades, there has been a steep decline in solar module cost, and and a steady climb towards higher efficiency. From my findings in this project, I have concluded that we are now at a point where we can embrace the clean, renewable potential which our sun offers. I have created and tested a proof-of concept electric vehicle (Solar EV), which can run indefinitely during daylight hours, provided sunny conditions. There are several mechanical features of my project which highlight the potential that renewable energy in transportation can have. Firstly the vehicle’s 500W motor is powered by 3 100W solar modules, and 3 50W modules, for a total of 450W or power generation. This means that when driving at anything less than 90% throttle, the Solar EV can run continuously without needing to stop to charge or refuel. Another design mechanism installed in the vehicle are three 12V lead acid batteries. These batteries allow the Solar EV to be powered for over 1.5 hours, which is useful during cloudy conditions, night, and most importantly, when driving through areas of shade. A unique efficiency component designed into my vehicle is the linear actuator I installed into the module racking system. This design element allows the tilt of the modules to be altered, to maximize the efficiency of the solar module array. At early or late hours of the day, it can be heavily tilted with the press toggle switch, or kept at a relatively flat level when the sun is the highest in the sky. I ran a series of trials to figure out whether or not the theoretical data matches up with the experimental results. After my series of trials, the bike was yet to run out of power. The solar vehicle reaches speeds up to 32 km/h, however comfortably glides at around 25 km/h. The linear actuator I installed allows the solar modules’ tilt to change . During different times of day or year, the sun is at different heights in the sky, however it is very important to maximize the solar potential. With the press of a switch, the module can be actuated to account for this. Lastly, regenerative braking captures the energy from braking. Using the reversible nature of a DC motor with a specialized motor controller responding to feedback from the brake actuators allows the vehicle to reuse energy that would otherwise be wasted as heat.
Absorption of Sr2+ at low concentrations using C.moniliferum-- With the aim of practical use of contaminated water processing of the Fukushima Daiichi Nuclear Power Station
We are conducting research for the purpose of treating contaminated water generated by the nuclear accident with C.moliniferum. In previous research, the school seniors examined whether there is a difference in absorption by changing the wavelength of the LED to establish efficient Sr2+ absorption conditions. As a result, the red wavelength was found to be effective for the efficient Sr2+ absorption of C. moniliferum. Therefore, in this study, in order to verify how much Sr is actually absorbed into the cell, the amount of Sr absorption using an atomic absorption photometer is quantified, and the previous research has shown that red is effective for the efficient Sr2+ absorption. The wavelength was considered to be effective because of photosynthesis, and was observed with a scanning electron microscope (SEM) using the photosynthesis inhibitor (DCMU). As a result, it was clarified that C. moniliferum absorbs Sr intracellularly, and photosynthesis was related to absorption.