Synthesis of Biodegradable Plastic From Food Waste
Based on NEA Waste Statistics and Overall Recycling Rate for 2017, 809,800 tonnes of food waste and 815,200 tonnes of plastic waste was generated. Both food waste and plastic waste account for more than 10% of the total waste generated in Singapore in 2017 respectively. However only 16% of the food waste and 6% of plastic waste was recycled, the rest of it was disposed at the incineration plants and then the landfill. Such action will eventually lead to 2 major environmental issues that Singapore will face in near future: 1)Semakau landfill is our only landfill left and it is expected to run out of space in near future 2)The burning of food waste results in the release of methane (CH4), a greenhouse gas that has over 25 times the impact in trapping excess heat in the atmosphere as compared to Carbon Dioxide (CO2). This will increase carbon footprint and contribute to greenhouse effect and global warming in due course. According to the Sustainable Singapore Blueprint 2015, Singapore is working towards becoming a Zero Waste Nation by reducing our consumption, reusing and recycling all materials. A national recycling rate target of 70% has been set for 2030 with an aim to increase domestic recycling rate from 20% in 2013 to 30% by 2030 and non-domestic recycling rate from 77% in 2013 to 81% by 2030. As part of our total commitment towards waste management and sustainability effort, the purpose of doing this research project is to investigate whether food waste can be recycled and made into biodegradable plastics. First of all, chitosan will be derived from shrimp shells and be dissolved in acetic acid and lactic acid produced by probiotic fermentation of fruit and/ or vegetable waste for synthesis of biodegradable plastics.
Considering Fukushima’s contaminated water treatment system using algae ~ To protect the oceans from radioactive emissions
Nine years ago, the Great East 日本 Earthquake caused the spread of a large amount of radioactive materials. Even now, the amount of contaminated water is increasing at a rate of 180 tons per day, and it is said that the storage tanks for the contaminated water will run out of space in the next two years (Fig. 1). If the contaminated water is discharged into the ocean, it will cause reputational damage to the fishing industry, and the environmental pollution. We are conducting to research to prevent it from happening. In the wake of the nuclear accident, the senior started water quality surveys at Chaya Marsh near the school. During the survey, they found (Chara braunii, Fig. 2), (Nitella axilliformis, Fig. 3), Closterium moniliferum (Fig. 4), and (Nostoc commune, Fig. 5).
The Waves Fish Controller
Our oceans, coasts, and estuaries are home to diverse living things. These organisms take many forms, from the tiniest single-celled plankton to the largest animal on Earth, the blue whale. Understanding the life cycles, habits, habitats, and inter-relationships of marine life contributes to our understanding of the planet as a whole. Human influence and reliance on these species, as well as changing environmental conditions, will determine the future health of these marine inhabitants Humans influence the whole environment even if they don’t notice , the growth of men and our increasing reproduction over the years results to an over consumption of nutritious products , which makes us exploit the wildlife more and more and in the same time take parts of its habitats for us to life in and throwing our non-needed materials in what’s left of the world. And that’s a big problem because the Eco-System was just fine before we started over exploiting it in a greedy and unreasonable manner, and since the ecosystem’s parts are related altogether in an ongoing circle , the absence or the destruction of one part of It may lead to the unbalance and even destruction of the whole organized system. And that’s why as humans, it is our first duty to take care of nature generally and both fauna and flora specifically, not because of a moral code of some kind; but to protect Humanity from ourselves, and to preserve the human kind from destruction and extinction. And that’s the main goal of our project, that’s to help us organize our fishing exploitative activities with how much can the environment handle from it.
Detect the Defect
"When the Well is Dry, we will know the Worth of Water." Most of 埃及 and the world suffers from water and petrol shortage. With the current consumption rate, two-thirds of the world's population may face water shortages by 2025. These are water pollution, overpopulation, and agriculture, leading to wastewater from landfills and pipes that seep into the ground and may pollute the water, making it unfit for human consumption and waste more water. Besides, some accidents happen to water distribution and irrigation systems, causing a significant loss in water. According to the ministry of water resources, in 2016, the need for freshwater is 67 billion cubic meters. On the other hand, 埃及 receives only 55 billion cubic meters (2.6 billion cubic meters of them evaporate during runoff). Also, one of the wasting water methods in modern irrigation systems is water leakage from pipes as the water transmission and distribution lose about 31% of the produced water due to pipe leakage. Besides, every day more than 3.3 billion liters of treated water – 20 percent of the nation's supply and 234 million liters a day more than a decade ago – are lost through leaking pipes in England and Wales. Many reasons lead to leakage in pipes like water pressure, clogs, and corrosion. The leakage in pipes does not exist in the lines of water only. Also, the pipes in a petrol can cause dangerous accidents like the accident in the Bahira government that led to the death of 6 people and made 19 in a dangerous state. Our project designed a system that can detect fluid leakage and deal with it fast to prevent the wasting of fluid by using sensors and electronic circuits. Our system provides us with information about the fluid (like the amount of the flowing fluid and its speed). Therefore, if there is a difference in the reads, we understand that there is a leakage in this region, and the system will automatically stop the fluid flowing through the pipes. the system will locate all the leakage sites and send them to the mobile app with the amount wasted and the actions taken.