The research of Ube anthocyanin characteristics and utilization
Anthocyanin is a water soluble pigment that may appear in various colors such as red, blue, and purple according to the pH. Ube is a fruit in the Philippines that is 3rd of the most cultivated crops. Since Ube contains a lot of anthocyanin, it helps to make the anthocyanin solution. As Anthocyanin reacts to the oxygen quickly it is also used as air pollution indicator because it changes its color according to what substances they are attached to it. To check if the solution reacts to the pollution such as SO2 and NO. When those pollutions are made artificially, examining the intensity of the anthocyanin solution depending on different Mol of the pollutions was able. The power of penetration of lights though the UV-VIS spectrophotometer increases according to the number of molecules of SO2, and also NO. To examine the change of intensity of anthocyanin solution in actual atmosphere, the solutions were exposed outside for several hours. The power of penetration decreases when exposed to an actual atmosphere. The other substances and oxidation were the causes of the changed in color of the solution To facilitate the usage of anthocyanin solution efficiently, it should be preserved, so that the density of specific color will be preserved when used as real air pollution indicator. In order to check what kinds of chemicals can preserve the anthocyanin solution; different kinds of strong acids, strong base, salts, and metals were added to the solution. After getting the data, the characteristics of the chemical which preserved the anthocyanin were scrutinized, than compared to the density of pure anthocyanin solution. To use anthocyanin as air pollution indication as a solid, the Korean traditional paper and cloth were dyed using ube which contains lots of anthocyanin than checked the pixel of red, green, and blue color. Firstly, chose 6 different salts. And then filter and boiled the anthocyanin solution. And then put each different salt in each paper. After that, dried the paper and check the difference of pixel of each paper. As a result, Calcium hydroxide (CaOH2) has highest pixel point. So, using calcium hydroxide to dye clothes is useful and it’s also useful for the air pollution indicator through the experiment. Especially it reacts to Nox and Sox, according to this experiment, it can use for eco-friendly air pollution indicator.
Equipping, programming and testing a robot searching for an avalanche transceiver
1. Purpose of the research Because we live in a famous winter sport region in Switzerland, we have been confronted with the problematic of avalanches since we were born. In winter 2011/2012 alone, 179 people were involved in an avalanche accident, of whom 25 died. The most important device for searching and rescuing a buried person is the avalanche transceiver. It creates an electromagnetic field, which can be used to locate a buried person with another transceiver. The most important factor while searching is time: After 30 min. the chance of survival of a buried person has dropped to 40%. Considering the fact that people often make mistakes when they are put under such a big stress, valuable time gets lost. This is where our project comes into play. With an automation of the searching process a fast and reliable search should be achieved. The aim we agreed on for this paper is to develop a prototype of a robot that can find an avalanche transceiver automatically and reliably. To study and optimize the functionality of our robot more easily, our tests have only been performed on flat ground. 2. Procedures The components of an avalanche transceiver with only one transmitting antenna are used as a receiver. With the help of this receiver, the signal of a transmitting avalanche transceiver was analysed. Furthermore, the results were used to evaluate the most suitable search technique. Our robot is based on the “RP6” robot system, which is programmable in the C-language. The signal of the receiver is modified in a way which allows the robot to read it. Based on the results of the signal analysis, a search algorithm is developed. In the final tests the robot was examined as to its functionality and efficiency. Therefore, the robot was positioned at randomly chosen starting points to locate the transmitting device. 3. Data The transmitter could be located correctly in every test. The starting points were successfully located up to 11 m from the transmitter. The search ending points were found at a maximum range of 0.5 m from the correct position. 4. Conclusions In view of the results, the aim of developing an automatic localisation of an avalanche transceiver on flat ground as a prototype is seen as fulfilled. Outside the specified range, the transmitter can only be located unreliably. This is due to the fact that outside that range the signal differential in different directions is too small to be processed by the robot. Our prototype was tested under ideal conditions. Certainly, our robot is still some way from being ready for use in an actual avalanche. Many different questions have not been answered yet or have come up during this project, for example: ‘How should the robot should be applied on uneven terrain?’ or: ‘How should it deal with several buried people at once (multiple transmitted signals)?’ Two aspects of our prototype, the low weight and the low construction costs, however, are particularly favourable.
Building Bridges with Water-The Floating Waterbridge
This paper describes the investigation of a fascinating physical phenomenon called the “floating water bridge”. Despite the fact that water is undoubtedly the most important chemical substance on earth, it is practically ubiquitous and it still represents one of the best explored substances, still not all characteristics are well-understood. There are some phenomena like the “floating water bridge”, which cannot be explained. If high voltage is applied to two beakers, which are arranged close to each other and which are filled with deionized water, a connection forms spontaneously, giving the impression of a floating water bridge. For the experiment discussed in this paper, two beakers with a diameter of 50 mm and a height of 80 mm are filled with triply deionized water. Platinum electrodes are submerged in the center of the beakers, one set to ground potential (anode), the other one on high voltage, up to 25 kV dc. Within the scope of this work, an experimental setup was developed, which enables measuring and demonstrating the most important parameters like voltage, current, length and temperature of the water bridge as well as the mass transfer between the beakers. In addition the correlation between the different parameters and the influence on the water bridge could be estimated. Once the beakers are separated, the bridge remains stable for several hours up to a length of 2.5 cm. With platinum electrodes and no electrolysis observed, a small current (≈300µA), a mass flow from anode to cathode and forces were measured. Pictures, taken with an infrared camera and a new developed method to record "infrared-videos", enabled to visualize the heat flow in the water bridge. Furthermore the conversion of energy and the dependence of charge and mass transfer could be estimated roughly. In the course of the investigations it was also tried to prove the water bridge with other liquids like castor oil, olive oil, a mixture of glycol and water as well as tap water - for some of them for the first time. Supplementary the experimental setup was varied by using different electrodes with different sizes and different material as well as beakers of different sizes and materials. In addition, a qualitative explanation was developed. The results of this work enable a better understanding of the floating water bridge and provide a basis for further research as well as for development of future practical applications. One of these applications could be an improved waste water treatment process.
On Course Line Management
The Online Course Management system was developed in 2012 by George Moon to address the issue of creating course books at Burnside High School in Christchurch, New Zealand. The course books are designed to inform students, staff and parents of the many courses that are available for students to choose for their next year of study. In the past, the system that the school used consisted of large amounts of paperwork and duplication. Not only did this system require a lot of effort from staff, but the course book cost the school thousands of dollars to produce, as it had to be sent off to be published into a large book that would be read by students for a week, then likely thrown out. This year the school decided to digitise the course book, so that students would look at their courses online. Earlier this year, the school believed that the new School Management System (SMS) ‘KAMAR’ would be able to handle all of the necessary information, however this was not the case. Because of this, they needed a simple solution that would collate all of the course data, and then output it as a course book. I developed my project to do this. It is a web based program that is accessible by staff on their computers which enables them to enter in all of the course and assessment data for their departments. As it is all securely stored on a central database, it reduces duplication and staff workload, as well as the added environmental bonus of less paper being used. The program also outputs data in a number of ways including as a coursebook PDF (digital document which can be uploaded or printed), an Excel spreadsheet and a webpage for easy viewing. It can be sorted or printed by different categories (such as level, faculty, department), which proved to be a very useful feature. Following some research on areas such as design principles, browser compatibility and screen resolution (computer screen size), the program was designed to make best use of this this information. For example, most of the computers that staff would access the website on were of a similar size screen, so I made sure that my website worked well for them. I also used my research on design principles to try and create a simple, clean interface that users with limited computer skills would easily be able to navigate around. The outcome was real, as it was used by the school to generate their coursebook this year. Following a 95% student completion rate of course selection many months earlier than previous years, the system (although it had some issues) was pronounced a success, and the school is looking to use it in the years to come. There are a number of steps I am looking to take in the future with this program including the potential sale to other schools, so they can take advantage of the features it has to offer.