化學光電池之光敏劑的開發與研究
六種自行合成出來的聯吡啶釕錯合物Ru(bpy)₃、Ru(bpy)₂(phen) 、 Ru(bpy)₂dcbpy、Ru(phen)₃、Ru(phen)₂(bpy)、Ru(phen)₂dcbpy 及商用染料N3-dye,被成功的做成光敏性太陽能電池。光電流的產生率可由IPCE (incident photon-to-current conversion efficiency) 的測量可知。此類釕錯合物可以物理吸附或化學鍵結於TiO₂奈米粒子上。IPCE 的大小可以用來探討不同吸附方式的釕錯合物轉換光電流的效率。在物理吸附上Ru(phen)₂(bpy)的效率最好。化學鍵結的以N3 Dye 最好,我們合成的錯合物以Ru(bpy)₂dcbpy 較佳。此種以TiO₂奈米結構為承載基材的太陽能光電池(Dye-Sensitized Solar Cell),染料仍以商用染料 N3-dye 最佳。本研究發現物理吸附的Ru complexes 也可產生光電流,若能最佳化,將可簡化染料錯合物之合成。
Six ruthenium complexes, Ru(bpy)₃, Ru(bpy)₂(phen), Ru(bpy)₂dcbpy, Ru(phen)₃, Ru(phen)₂(bpy), and Ru(phen)₂dcbpy were synthesized. These Ru complexes and N3 dye have been incorporated into the dye-sensitized solar cell system. The solar energy conversion of the ruthenium complexes were measured and converted to IPCE (incident photon-to-current conversion efficiency). There complexes were either chemically bonded or physically absorbed onto the nano-sized TiO₂ particles. The IPCE were utilized to compare the photon-to-current efficiency of these Ru complexes. Among the physical-absorbed dyes, Ru(phen)₂(bpy) has the highest IPCE. For chemical-absorbed dyes, the commercial N3 dye is still the best. Among the complexes synthesized in this research that are chemical-absorbed, Ru(phen)₂dcbpy has the highest IPCE
The commercial N3 dye has the highest IPCE in the dye-sensitized TiO₂nanoparticle solar cell. We found that physically absorbed dye can convert photon to current. With better solar cell assembly, physically absorbed dye can have the same conversion efficiency as N3 dye.
心手相連的正方形
正方形兩條對角線的交點(即中心點)距四頂點等長,也與四邊等距。如果將正方形的頂點比擬成它的「手」,兩對角線的交點當成它的「心」,則兩個正方形頂點間、中心點間、或頂點與中心點間的線段相連(或重合),就如同「手」或「心」彼此相連。本文即探索當多個正方形間「心手相連」時,衍生圖形間的面積關係。而四個正方形中某幾個頂點相接(邊未重疊),恰圍出兩個三角形的圖形則是本內容討論圖形的主體架構,我們以此架構向外作出「層出不窮」的正方形,再配合中心點連接成四邊形,將推導出這些四邊形與基準正方形(Reference Square)間的面積關係。In a square, the lengths from the intersection point (center point) of two diagonal lines to the four apexes are the same, and so are they from that point to the four sides. If the apexes are “hands” and the intersection point of two diagonal lines is the “heart” of a square, the connection or overlap of two squares’ apexes and apexes, center point and center point, or apexes and center points is just like the connection of hands with hearts. In this article, hence, we are to explore the relation in area of derivative graphs formed by several squares connected “heart in hand.” When some apexes of four squares are overlain without sides overlapped, two triangles are created. And that’s the theme we are going to discuss. Furthermore, we extend the operation to infinitely overlain squares and frame out quadrangles referring to the center points of some squares. Then, the relation in areas of these overlapped squares and the Reference Square would be deduced.
應用生物特徵及視覺密碼學防治車輛失竊和酒醉駕車
車輛遭竊以及酒醉駕車對社會安全造成的危害普遍存在於世界各先進國家。以目前看來,此問題並非嚴刑峻罰就能解決的。若本研究計畫將來普及應用於大眾,必定可以同時減少車輛遭竊之機會和預先防範酒醉者開車駕駛。 生物特徵泛指指紋、虹膜、臉型、聲紋甚至DNA 等等,它的特性即每個人均具有此獨一無二的性徵,加以應用就如同無法被仿造或偷竊的身分證明。若車主能利用自己的生物特徵為車輛上鎖,即可防止車輛遭竊。 視覺密碼學是屬於資訊隱藏技術的一種,藉由兩張以上的影像疊合後呈現其中隱藏之機密資料。雖然視覺密碼學原先純粹是為了加密資料,但我們將之加以修改,設計出複雜且無意義的偽裝影像,使其不易被酒醉後神智不清的人疊合成功而讀出其中的加密資料。 結合生物特徵及視覺密碼學,即可設計出一套可安裝於車上的系統,不僅防止車輛失竊又能防止酒醉駕車事故的發生。 ;The damage which is caused to social security by car stealing and drunk driving universally exist in others developed countries. As things are, these problems can not be solved by severe law. If our project can be applied in the masses extensively, it must be able to prevent both car stealing and drunk driving. Roughly speaking, biological characteristics mean fingerprint, iris, face, pronunciation and DNA. Their uniqueness is a special feature that everyone has. If we can apply it more, the characteristics are identification that can not be imitated or stolen. If the car owner can use his or her biological characteristics to lock the car, the car stealing could be prevented. Visual cryptography belongs to a kind of information hiding. By stacking two or more images, user can recognize the secret information hiding in the stacking. Although visual cryptography is merely created for encryption at first, we modify it and design a complex as well as meaningless stego-image. That makes the unconscious driver who is drunk fail to both stack the images and recognize the secret information hiding inside. We combine biological characteristics with visual cryptography and design a suit of system that is able to install in the car. This system can prevent not only car stealing but also drunk driving.
Using clay and paper fibre to treat waste water in the Bay Mau Lake in the Thong Nhat Park, Hanoi, V
The Bay Mau Lake inside the Thong Nhat Park in Hanoi is the second largest lake in\r Hanoi. The lake serves not just as an equitable tank for the rainwater, as a reservoir for\r intake of wastewater, as a wastewater treatment pond, but also as a recreation area for\r Hanoi people and visitors from other provinces. The Bay Mau Lake is polluted at\r alarming level.\r The author has carried out a study on the water pollution level and the sources of\r pollution. The study revealed that the lake polluted mainly by domestic wastewater\r discharging from living quarters with total about 800,000 inhabitants. The author\r demonstrated different measures to reduce the pollution level in the lake such as raising\r environmental awareness for the public, a simple, reasonable cheap measure, which can\r be both realistic and effective. Besides, the author proposed to use bio-treatment of the\r water discharging into the Bay Mau Lake, building of a pumping station, fish farming...\r The clay-paper fibre mixture is used for the biological treatment of wastewater at the\r inlets. The advantage of this method is that it is a simple, cheap and realistic solution.\r Treatment of the water using clay and paper fibre mixture for filtration and plantation of\r aquatic plants as lotus and water lily together will provide oxygen for the aquatic\r environment of the lake. As results of the study, it is recommended to use both methods,\r namely raising environmental awareness for the public and biotreatement method using\r clay and paper fibre, to improve water quality of the lake.
斑馬魚 SULT2 ST2在早期胚胎發育的 RNA 表現
在哺乳動物裡,硫酸化是一種參與外來物解毒作用、內生組織的荷爾蒙調節、藥物代謝及膽汁解毒之重要路徑。其中, SULTZ ( hydroxysteroid sulfotransferase )是能進行上述反應的酵素之一,為了對 SULTZ 的功能與早期發育所扮演的角色作進一步的研究,在本實驗中,我們以班馬魚為模式動物,希望藉由原位雜交法( in situ hybridization )找到 SULTZ 在班馬魚早期胚胎發育的 RNA 表現位置。由目前的實驗結果,發現從卵巢到1-cell、 dome 、 50 %一 epiboly 、 12 小時,都可在胚胎細胞看到訊號表現 · 在 24 小時、 36 小時、 48 小時、 72 小時則可在脊椎兩側體節的肌肉、內胚層、嗅窩、頭部看到訊號表現,此外,在成腦的原位雜交染色結果中亦看到了訊號表現。由此可推論 SULTZ 在斑馬魚早期發育確實扮演了重要的角色。Sulphonation is an important pathway for detoxification of xenobioties, bile acids, drug metabolism, and the regulation of endogenous hormones. SULT2 (hydroxysteroid sulfotransferase) is one of the enzymes which catalyse sulphonation. Zebrafish has emerged as a popular animal model in recent years. Compared with other vertebrates, it provides advantages including ease to get embryos, rapid external development, virtually transparent embryos and ease of genetic manipulation. The above-mentioned strong points made zebrafish a good model animal for us to understand the function of SULT2 during early embryonic development. We performed in situ hybridization to find out the RNA expression of SULT2 during zerbrafish early development. According to our present results, we can detect expression signal on the edge of telencephalon and tectum opticum. the edge on the dorsal zone of corpus cerebelli and ventral zone of periventircular hypothalamus of the adult brain. Besides, we can observe signal evenly distributed in blastocytes of the embryo at 1-cell, dome. 50%-epiboly and 12 hours after fertilization. We also find signal on the muscle next to the spinal cord during the stages of 24, 36, 48 and 72hrs. There are also expressions on hypoblast of embryos at 24, 36 and 72hrs, the olfactory pit at 36 and 4hrs, and strong expression in head region at 48 and 72hrs. These results suggest that SULT2 may have some function at the early development of zebrafish.
人面蜘蛛藉調整絲基因表現及網結構促進捕食效率
前人研究顯示結網性蜘蛛會因環境中獵物組成的改變而改變其網結構。然而,除了結構之外,構成網的絲的物理性質與蜘蛛網的捕捉效率也應有密切之關連,但目前並無人探討蜘蛛是否會因獵物而調整絲之化學及物理性質。在本研究中,我以人面蜘蛛為材料,探討:(一)其在面對不同類型之獵物時是否調整其網之結構,絲之胺基酸組成和其物理性質;(二)所產生之改變是否能促進不同類型獵物的捕食效率;以及(三)是獵物之養份或振動刺激引起這些改變。我藉著操控獵物的養份及振動刺激將人面蜘蛛分成四個處理組,分別餵以活蟋蟀(C 組),活蒼蠅(F 組),死蟋蟀加蒼蠅振動刺激(Cd 組)及死蒼蠅加蟋蟀振動刺激(Fd 組)。在完成食控處理後比較各組間之網結構、絲胺基酸組成、絲物理性質、對不同獵物之留置能力以及振動訊號傳遞能力。實驗結果顯示F 組之蜘蛛所結之網有較大的面積及較小的網目,並有較佳之蒼蠅留置力;然而此結構之改變卻會降低其振動訊號傳遞率。C 組之蜘蛛所結之網有較強之張力及較佳之蟋蟀留置力,而且其所產之曳絲有較高比例之alanine、glycine 及glutamine 並較佳之延伸度及韌度,以因應體型較大之獵物。上述結果顯示人面蜘蛛能調整網的結構、絲的蛋白質組成及物理性質來更有效率的捕捉不同類型的獵物。而由於上述各樣變數在C 及F 組間有顯著差異,而在獵物養份與振動訊號錯置的Cd 與Fd 組間無顯著差異,顯示此二項刺激需同時存在才能使人面蜘蛛在面對不同類型獵物時產生結網行為及絲基因表現之改變。Previous studies showed that orb-weaving spiders may adjust web structures when encountering different types of prey. In addition to web structures, silk physical properties should also be critical in affecting the prey catching efficiency of webs. However, so far no one has studied whether spiders adjust silk chemical and physical properties when encountering different types of prey. In this study, I used the giant wood spider Nephila pilipes to investigate (1) would N. pilipes adjust web structures, silk amino acid composition and silk physical properties when encountering different types of prey (2) would such changes enhance the catching efficiency of different prey and (3) were such changes generated by prey chemical composition or vibration signals? To answer these questions, I manipulated prey chemical composition and vibration signals by assigning N. pilipes into the following four feeding groups: (1) living crickets (group C), (2) living flies (group F), (3) dead cricket but with fly vibration signals (group Cd) and (4) dead flies but with cricket vibration signals (group Fd). After the feeding treatments were completed the following variables were compared between the feeding groups: web structures, silk amino acid composition, silk physical properties, retention time of different prey and vibration signal transmission rate of webs. The results showed that the webs built by spiders fed with living flies exhibited larger area, smaller mesh and longer fly retention time. However, such structural changes also reduced the vibration signal transmission ability of the web. On the other hand, webs built by spiders fed with living crickets were stiffer and retained crickets longer. Moreover, their silks exhibited higher percentages of alanine, glycine, glutamine and consequently higher elasticity and strength to cope with the larger prey. These results demonstrated that spiders can adjust web structures, silk protein composition and silk physical properties to enhance the catching efficiency of different prey. While the aforementioned variables differed significantly between spiders in C and F groups, they did not vary between spiders in Cd and Fd groups, in which groups the prey chemical composition and vibration signals were decoupled. Such result suggested that prey chemical composition and vibration signal were both needed in generating changes in web building behavior and silk gene expression in spiders.
探討以最經濟的方式偵測低濃度溶液之金屬離子
A novel technology for detection of trace concentration of ions at ppb level was developed. The detection limit of this method can be reached to 1ppb. The Wheatstone bridge usually be used for determination the concentration of metal ion, the major disadvantage of this technique is the precision too low. Atom absorption spectroscopy is better for monitoring trace metal ion, but the cost of instrument is too expensive. In this study, the oscilloscope was used to modify the Wheatstone bridge Circuit. The difference between the voltages of two connection points of Wheatstone bridge was used to estimate the concentration of ions. The amplification system was used in this method to improve the limit to detect ion from 10 ppm to 10ppb. The parameters of measurement including types of probe, match of Wheatstone bridge resistances, parameters of input signal and electrolysis in solution were also being studied. 本研究主要是發展一個富有創新且經濟的ppb ( parts per billion ; 10-9)級,微濃度金屬離子量策技術,目前本實驗設計已可以達到 ppb的偵測極限,尤其本方法不僅能夠應用於定量,尚可做定性偵測。簡易的溶液濃度技術常使用惠司通電橋的方法,但這個方法的缺點在於精確度較低,而另外常用的儀器是原子吸收光譜儀,卻價格高昂。因此,我們回頭對惠司通電橋的技術作改良和創新技術。首先,最重要的新技術是對示波器的改良。示波器被用來量測惠司通電橋的電位,我們比較電橋上兩特定點的電位來判斷濃度,當兩個點的電位相同時代表溶液電阻和控制電阻相同。但當輸入信號的電壓太強時,示波器上並無法判別細微的電位變化,因此造成量測的精度不高。本組設計新的電路用以放大在高強度訊號的波形細微變化,成功將測量極限由 10 ppm推進到 ppb。另外關於此設計中的各種參數,包括探針類型、惠司通電路的電阻匹配、輸入訊號之強度頻率、電極間電容效應及溶液中可能發生的電解效應等,都有精確的探討。最後的設計結果將是創新且有別於以往的設計概念。
Self Assembly Mechanism of Water Drotlets
這是一系列關於水蒸氣冷凝為極細微小水珠的長程實驗。其中可以分為下列三個階段:第一階段是基礎實驗。將水氣導入至潔淨的光滑表面上(蓋玻片),觀察水珠冷凝的機制。第二階段是在外加磁場及電場作用下,將水氣導入至潔淨的光滑表面(蓋玻片),觀察水珠冷凝的機制。這部分的實驗推翻了一般「水分子是電中性,在電場或磁場中不受影響 」的刻板觀念!實驗所呈現出來的冷凝水珠,不但有明確的自我組成模式( Self assembly pattern)。並且發現:電場會增速凝結水珠的成長(Aggregation),而磁場則會抑制凝結水珠的成長。第三階段是將水蒸氣導引至超聲波的環境中:我們先將超聲波訊號產生器(變頻、定頻)面向於載台旁,再讓水氣導入至潔淨的光滑表面上(蓋玻片),觀察冷凝水珠的機制。當使用固定頻率超聲波波源,我們發現:在超聲波場中水珠的成長會受到抑制,且成長速率會隨著頻率的升高而逐漸減小。第一階段與第二階段的實驗結果與討論已分別發表於2004 年及2005 年的台灣國際科學展覽報告中,本作品將詳述第三階段。 This experiment explores the basic nature of the condensation of water vapor into droplets on the surfaces of cover glasses. This condensation occurs because of the difference in temperature between the water vapor and the cover glass. The condensation process is observed under a microscope. The growth of the droplets can be described as: nucleation, aggregation (piling up) and coalescence. The growth is irrelevant to surfaces or environments. It is found that the temperature difference of moist air over the cover glass do not affect the nucleation size of the droplets in simple plain surroundings; while the change of flow rate does. In general, the coalescence is speeded up at higher temperatures. Furthermore, the effects of electric fields 、magnetic fields and ultrasonic waves are also studied. It can be observed that the size of water droplets become smaller and grow more uniformly under magnetic fields or imposed ultrasonic waves; also, the aggregation rate is decreased by imposed magnetic fields or ultrasonic waves, and it is increased by imposed electric fields. These effects of magnetic fields 、electric fields and imposed ultrasonic waves might be related to the flow conditions and the vibration of surrounding air in the system. This experiment provides the first step in the understanding of the formation of water droplets and their self assembly mechanism in different environment.