製備藻類衍生物碳點與 Mxene複合材料並應用高效超級電容
本研究運用綠藻、螺旋藻、卡拉膠(k,i,λ)進行製備碳點並應用高效超級電容。本實驗已完成綠藻、螺旋藻、卡拉膠( k,i,λ)在不同的pH值中的溶解度測試,並找出綠藻、螺旋藻、卡拉膠(k,i,λ)各自適合溶解的溫度及溶液。此外,中途也已透過文獻中的實驗證實我們實驗中所運用的電化學實驗設計及裝置可以成功製備出碳點。而在電化學製備碳點的部分目前完成單獨藻類、藻類加histidne的電擊實驗以及測其吸收光譜,也運用先前製備出較穩定的碳點加入MXene進行電化學分析,透過碳點擴大MXene分層,以達到增加MXene電化學效能的效果。最後,預計之後將進行更多的電化學分析,進一步地確認碳點結合MXene能在超級電容的應用。
Utilization of Nano cellulose from date palm waste for improvement of thermal stability in epoxy composite
Nano additives is becoming popular trends nowadays due to its nanosize (1-100 nm). Incorporating nano additives in polymer could increase different properties such as mechanical, physical, electrical and thermal stability (1, 2). Different nano additives has been used such as nano copper oxide, nano silica, nano zinc oxide, nano titanium dioxide but most of these come from synthetic or metal oxides that considered as non-environmentally friendly and harmful to human when exposed or inhaled (3). One of the green materials that become attention by researchers is nano cellulose. Nano cellulose can be extracted in different methods and sources such as from wood, and non-woody resources such as kenaf, jute, bamboo as well as from bacteria such as Acetobacter species(4). This making nano cellulose abundantly available in resources. Nano cellulose can be in the form of nano crystalline cellulose (CNC) or NCC or can be in form of nano fibrillated cellulose (NFC) and bacterial nanocellulose (BNC)(5). This nanocellulose has many advantages that can give improvement in different applications such as mechanical, physical, thermal and improving the biodegradation when added together in different matrices (6, 7). Polymers have a problem in thermal stability while processing. It hard to control and maintain the thermal stability of polymer during processing and most polymers considered to have low in thermal stability except for thermosetting polymers such as epoxy. Epoxy has been widely used in many fields such as coating, adhesive, laminates, castings and many more (8). But the drawbacks of epoxy while using is hard to maintain and controll the thermal properties when processing of this materials and used for long period due to aging and attack by free radicals causing by UV radiation (9, 10). In this study we are incorporating nano additives into epoxy as polymer matrix to enhance and improve the thermal stability of composite by crosslinking the polymer chains with the nano additives. Furthermore, the nano additive used is come from nano cellulose extracted from date palm waste and thus to create an environmentally friendly and sustainable nano additives products.
Reviving Resources: Harnessing Soap Nut Greywater for Sustainable Plant Growth
Due to widespread water shortages, there is an increasing need for innovative water conservation strategies, such as reusing greywater from laundry. The World Health Organization (WHO) recognizes greywater as suitable for plant irrigation, but commercial laundry detergents contain synthetic chemicals that can harm both the environment and plant health. Soap nuts, derived from the Sapindus mukorossi tree, offer a natural alternative. Their pericarp is rich in triterpenoid saponins, amphiphilic compounds, composed of hydrophilic sugar group and hydrophobic triterpenoid sapogenins. These saponins mimic the chemical structure of surfactants in detergents, allowing soap nuts to act as natural foaming and surface-active agents in water. As a result, soap nuts have long been used as a sustainable option for shampoo and laundry detergent in many Asian countries (Sochacki & Vogt, 2022). Greywater, an often overlooked resource, is generated from household activities like laundry, showers, and basins. Unlike blackwater, it contains lower levels of pathogens and bacteria. However, due to a lack of awareness, greywater is frequently mixed with blackwater and directed to the same sewage treatment systems (Greywater Systems: From Recycling to Filtration, n.d.). Greywater accounts for 50-80% of a household’s daily wastewater (Wong, 2011). Repurposing greywater offers a promising and sustainable solution to address water conservation challenges.