全國中小學科展

2025年

BeeMind AI: Development of an AI-Based System to Assess Honeybee Health, Behavior, and Nutrient Effects on Learning and Memory

Due to their pollination services, honeybees are one of the most ecologically vital animals, being singlehandedly responsible for nearly 80% of global agricultural pollination [1]. However, in recent years, they have experienced large declines in populations, and as a survey reported roughly 50% of beekeepers in the US lost their honeybee colonies [2]. These losses are experienced globally due to a combination of many factors, including but not limited to habitat loss, pesticides, climate change, and other invasive species [3, 4]. One of the biggest factors attributed to the decline of honeybee colonies is the usage of pesticides, specifically neonicotinoids [3-6]. Neonicotinoid compounds have been used globally since their introduction in the early 1990s [4]. Studies have shown that neonicotinoids can have both sublethal and lethal effects on honeybees, depending on the dosages that they are exposed to, as neonicotinoids bind to nervous system receptors of honeybees [7]. These effects can range from behavior changes to altered motor functions [7-9]. Among the reported effects, one of the more significant ones is the effect of neonicotinoids on honeybee learning and memory [10, 11]. Additionally, there is a lack of availability for methods of monitoring of honeybee hives, essentially meaning that the only methods to track honeybee health are through obtrusive physical methods of inspection. This paper aims to develop a novel AI-based honeybee health assessment system, able to monitor beehives using the following functions: continuous temperature and humidity monitoring both inside and outside the hive, as well as video and audio recording to assess honeybee health as well as population. In addition, this system can be used for honeybee-related studies such as nutrition effects and evaluation on health, learning, and memory. To do this, four types of nutrition have been studied and their effects have been analyzed by a deep learning approach.

以智慧型高親水薄膜提升汗液感測靈敏度 Enhancing Sweat Sensing Sensitivity with SmartHydrophilic Thin Films

本研究主要是以晶片和織布進行結合,以電極收集訊號分析受測者的鈉濃度和汗液流量,研發長期保持潤濕和擁有穩定性的高親水性薄膜Polyacrylic acid / Cellulose nanocrystals(PAA / CNC)感測器。製備不同濃度比例的PAA / CNC光固化水凝膠,進行接觸角、FTIR圖譜、溶脹比 (Swelling Ratio)、SEM、EIS 潤濕面積分析並比較選擇出PAA /10 CNC的濃度比例作為最佳的汗液感測電極。利用CNC與PET片間貼合度強化結果,能有效提升薄膜親水性,降低電極與織布中的親疏水性差異,加強電極感測靈敏度,相較於對照組,電容值結果顯示約提升5~10倍的靈敏度。本研究開發一個靈敏且穩定即時監測汗液的薄膜,並結合藍芽應用於智慧裝置。

探討自我參照和社會訊息對不同年齡、性別連結記憶的影響

連結記憶(Associative Memory)為記憶兩物體之間關係的能力,會隨著年齡增加而衰退。先前研究顯示不同性別在記憶的老化程度存在差異,然而針對連結記憶在不同性別的老化未被討論。過去研究發現自我參照效應以及改變刺激材料的社會訊息程度可提升連結記憶的表現。然而缺乏同時使用兩種方法研究,兩者之間的交互作用尚不清楚。本實驗分別針對不同年齡與性別的群體進行連結記憶測驗。我們引導受試者使用自我參照記憶具有不同社會訊息程度的圖片,測量其連結記憶表現。結果顯示,女性有顯著的連結記憶衰退;而男性沒有顯著的連結記憶衰退,其記憶衰退可能與項目記憶有關。另外,我們也觀察到參照與社會訊息對連結記憶的影響具有交互作用,在未來實驗中有必要注意兩者之間的互相影響。

A Humanoid Robot on the Basis of Modules Controlled Through a Serial Half-Duplex UART Bus

This thesis presents the design and construction of a small-scale humanoid robot, covering all aspects from 3D modeling to electronics design and programming. The robot is built entirely from custom 3D-printed components, with a new servomotor developed specifically to meet the project’s requirements. During the robot’s development, custom electronics were also designed, leading to a modular platform that enables easy interaction with diverse modules like servomotors and inertial measurement unit (IMU) modules. This modular approach allows these components to be programmed and controlled with minimal adjustments, as well as making development of potential future modules straightforward. The robot is operated via a computer application that includes a graphical user interface for displaying real-time data from the robot.

探討環形 RNA circACTN4 在非小細胞肺癌中的特性及功能

肺癌是世界上死亡率第一的癌症。根據近期研究發現,環形RNA (circular RNA;circRNA)比一般的線狀 mRNA穩定,並且會調控癌細胞。但circRNA於肺癌中的調控機制仍不清楚,因此我們決定挑選一個circRNA作為研究對象。首先,我們從 GEO 公開資料庫中篩選肺癌病人中差異表現的 circRNA,經 qPCR在肺癌細胞株驗證後,最終找到circACTN4 進行後續的研究。實驗結果顯示 circACTN4 在肺癌細胞株中確實為環狀結構,內生性表現量上升,且大都分布在細胞質。使用siRNA降低 circACTN4 表現量後,會增加細胞停留在細胞週期之G1期的數量,且 CDK4 和 CCND1 蛋白量也會降低。因此我們推測 circACTN4 可以促進肺癌細胞增殖的效果。更進一步的研究揭示,circACTN4能與LRPPRC蛋白結合,這種相互作用可能是circACTN4在肺癌中發揮調控作用的關鍵機制。總上所述,circACTN4 會促進肺癌細胞的生長,盼未來能作為預後的指標,並發展為治療肺癌的新標的。

Equation of Ellipse over Fp and Pairs of Quadratic Residues/Nonresidues Related to Catalan Numbers

The equation of an ellipse and quadratic residues are well-known concepts in elementary geometry and number theory, respectively. While the properties of ellipse equations in Euclidean space have been extensively studied, many characteristics of quadratic residues, such as consecutive quadratic residues, have also been explored in past research. In this study, we discovered the characteristic polynomial of the equation of an ellipse over finite fields Fp, a single-variable polynomial that shares the same roots as the ellipse. Furthermore, by examining the parallels between the equation of an ellipse and the pairs of residues and nonresidues, we derived a characteristic polynomial for this concept and demonstrated its connection to the Catalan number, a significant sequence in combinatorics. This research was conducted through the following steps. First, the power sums of the roots of the ellipse in Fp were calculated using the Legendre symbol and Euler’s criterion. Next, the characteristic polynomial of the ellipse was determined using Newton’s identity, generating functions, and Vieta’s theorem. Finally, leveraging the equivalence between the equation of the ellipse and the pairs of residues and nonresidues, we established the main results connecting these two concepts with Catalan numbers.

探討在秀麗隱桿線蟲中IFE-1經由sRNA路徑對於精子生成機制的影響

sRNA在各種物種的精子功能中起著至關重要的作用。在秀麗隱桿線中,當缺少精子相關的sRNA「ALG-3/4 26G sRNA」會導致其在25度時不孕。此外,IFE-1是人類真核轉譯起始因子EIF4E的直系同源基因,主要表達於雄性生殖細胞系統中。在先前研究中我們觀察到當「真核轉譯起始因子IFE-1有缺陷」或「精子缺少相關sRNA」時,亦會導致精子具有缺陷。由於三者的相似性,我們認為IFE-1和26G sRNA的生成路徑有關。因此我們假設IFE-1參與協助酵素NYN-3辨認並切割msd-1 mRNA模板後促進26G sRNA生成。我們使用Western Blot、IP、螢光顯微鏡等方法,探討了IFE-1和MSD-1::GFP的關係,發現在ife-1正常的情況下,高溫對於MSD-1::GFP的表現量沒有影響。並且因該蛋白只表現在公蟲精子,我們可以推論msd-1:gfp 只作用於公蟲精子。而此疑似可正向調控基因表現的26G sRNA,有望發展成有別於過往sRNA藥物抑制基因表現的一種新基因治療方法。

猜拳與轉向中的運籌帷幄- 探討人類與鼠婦在連續決策行為 的偏好與決策經驗依賴等特性

本研究記錄人類進行「剪刀石頭布」遊戲時的決策行為,也設計T型迷宮建立鼠婦之負趨光行為作為動物模式,探討行為偏好與決策依賴性等特性。我們發現「出石頭」的機率較高,且時間間隔縮短後,「出剪刀」的機率增加而「出石頭」的機率減少,並會展現負相關的決策經驗依賴性,其中「慢出組」更為明顯,代表出拳間隔縮短而減少意識作用,負相關的決策經驗依賴性即會減弱。另一方面,鼠婦在負趨光性刺激剛消失後,仍呈現負趨光性的選擇方向,具有習慣性。鼠婦在選擇行走方向多次後,會呈現與前次選擇的正向相關性。在負趨光性的環境刺激後,上述的現象會先消失,而後再現。若負趨光性刺激方向轉換,則原先的趨光行為消失,應是因方向選擇的習慣性干擾了負趨光性的選擇。

從幾何分析到正n邊形線段n次方和之探討

本研究要探討在兩同心圓,大圓的內接大正五邊形和中心在小圓上移動的小正五邊形在固定邊長、圓半徑的情況下,不論小正五邊形在圓上如何移動,其對應頂點的距離平方和、四次方和為定值以及頂點至對應邊的距離的總和、平方和為定值並試著推廣至正n 邊形並找出它們的定值為何 。

Revolutionizing Metabolic Health: The Therapeutic Potential of Next-Generation Probiotic Akkermansia Strains (Z62, IR119) for Metabolic Syndromes

The human gut microbiome is integral to digestion, overall health, and metabolic disorder imbalances. Recent advancements in fecal microbiota transplantation (FMT) have highlighted the therapeutic promise of restoring healthy gut microbiota in populations with high incidences of diseases. Focusing on fecal DNA samples from healthy Asian individuals, this study examines the potential of novel Akkermansia strains, specifically Akkermansia muciniphila (Z62) and Akkermansia massiliensis (IR119), as next-generation probiotics for mitigating metabolic syndrome. A key aspect of the study is the investigation of short-chain fatty acids (SCFAs), which are produced and play a crucial role in regulating metabolic processes. SCFAs such as butyrate, acetate, and propionate are essential for energy provision to colon cells and exerting anti-inflammatory effects. The methodology involves selecting two Akkermansia strains, analyzing them through 16S rRNA and WGS, evaluating their growth and survival rates under acidic and bile-salt conditions, alongside their cell adhesion capabilities. The study focuses on the production of key short-chain fatty acids (SCFAs) and tryptophan derivatives by bacteria in regulating metabolic processes, as well as their anti-inflammatory effects on colon cells. Through in vitro assays, both strains exhibited survival in acidic/bile-rich conditions, though Z62 demonstrated superior adhesion to Caco-2 cells, suggesting a higher colonization potential. Metabolomic analysis revealed both strains produce SCFAs, including propionic and acetic acids, and indole metabolites, such as indole-3-propionic acid and indole-3-acetic acid, which are known to influence lipid metabolism and insulin sensitivity. In adipocyte cell models, IR119 significantly reduced lipid accumulation, while Z62 increased lipid presence. Furthermore, IR119 reduced pro-inflammatory cytokine levels, including IL-6 and TNF-α, suggesting potential for inflammation mitigation. The future potential of IR119 as a therapeutic probiotic is extraordinary in addressing complex metabolic and inflammatory diseases, which open new avenues for managing chronic inflammatory conditions like type 2 diabetes and cardiovascular disease. Future clinical trials could refine IR119’s efficacy, positioning it as a leading probiotic in preventive and therapeutic contexts.