Safe CrossWalk (SCW)
Safe CrossWalk (SCW) is an innovative solution designed to enhance pedestrian safety at crosswalks, addressing the alarming issue of 270,000 pedestrian fatalities worldwide each year. By integrating advanced sensors, artificial intelligence, and real-time communication, SCW creates safer and more efficient urban environments. The system comprises three key components: SCW Strisce, a smart crosswalk device that detects pedestrian movement; SCW Car, a vehicle-integrated system that alerts drivers; and SCW AI, which processes data to optimize traffic flow and safety measures. SCW offers a proactive approach to reducing accidents through detection, alerts, and data-driven optimization. The solution not only improves safety but also supports urban planning by providing valuable insights into pedestrian and vehicle behavior. SCW aligns with the growing demand for AI-driven technologies in Smart Cities, presenting a scalable and cost-effective model for implementation. By fostering collaboration with municipalities and insurance companies, Safe CrossWalk aims to transform urban mobility, saving lives and creating smarter, safer cities.
Using Focused Ultrasound and Pulsed Ultrasound as a Solution to Viral Infection
Viruses Both enveloped and non-enveloped viruses conceal their membrane-penetrating peptide, usually within a glycoprotein of the virion membrane, inside the coat, or within the virion lumen. Cellular signals expose membrane-penetrating peptides that influence the virus during its entry. Instances of cellular signals regulating virus entry include receptors, enzymes, and substances like proteases, metal ions, and reducing agents. Recently, motor proteins or virus maturation have been seen to regulate virus entry through mechanical processes.
大「逆」不道—局部逆境下植物體內傳訊與物質分配機制
When a leaf of a plant encounters stress, how does the plant convey the stress signal to other tissues and manage nutrient distribution? This field of study has been largely unexplored. However, the unique interconnected frond structure of Lemna trisulca, along with the use of a divided Petri dish, is very suitable for handling localized stress and investigating the mechanisms of intracellular signaling and nutrient distribution. Research has shown that when the mother leaf experiences localized stress, it releases healthy daughter leaves to minimize collateral damage to the daughter leaves. Conversely, when the daughter leaves face localized stress, the mother leaf chooses to retain them and continues supplying them with nutrients to support their survival. In-depth studies revealed that stressed daughter leaves accumulate Reactive Oxygen Species (ROS), triggering nutrient distribution by sending a distress signal to the mother leaf. This prompts the mother leaf to use Ca2+ as a signaling molecule to deliver nutrients to the daughter leaves. Selective detachment is regulated and triggered by the interaction between Ca2+ and ROS within the mother leaf. When the mother leaf undergoes stress, Ca2+ acts upstream to induce ROS accumulation at the nodes, sending a unidirectional detachment signal to the daughter leaves. This causes ROS accumulation at the daughter leaf nodes, inducing detachment and thereby reducing the collateral damage the daughter leaf could experience due to the mother leaves.
PiezoPioggia: Energy Harvesting with Raindrops
MAGALH˜AES, Eduardo De Mˆonaco. PiezoPioggia: Energy Harvesting with Raindrops. 2024. 24 p. Research report – Scientific Apprentice Program, Col´egio Dante Alighieri, S˜ao Paulo, 2024. This project wishes to study and analyze the possibility of generating clean and accessible energy with the plain impact of droplets in the ground. Therefore, it was necessary to use piezoelectric devices in order to convert the kinetic energy of each droplet into electric energy throughout piezoelectric energy harvesting processes, (PEH). Piezoelectricity is a method of clean and sustainable energy generation, developed and explored by several scientists worldwide. Thus, while studying the proprieties of those devices, the project evaluates the present situation of electricity harvesting in Brazil, the benefits of piezoelectric technology and the possibilities it presents to economy and society. Throughout the development the project builds itself upon mathematical equations and experimental results, analyzing the deformation and generated tensions of piezos. Brand new data on the behavior of rain, as well as about the potential it presents for PEH are highlighted throughout the research, reinforcing the value of such process as a sustainable energy generation method alongside with its investment potential, both from governmental and private institutions. The project also deeply characterizes the piezoelectric device studied, diving deeply in its characteristics and evaluating the deformation of the device and treating the data sets with statistical analysis methods, in order to improve the precision of the data presented. All in all, the opportunities of piezoelectric energy harvesting in the rain, nella pioggia, shall be discussed profoundly throughout the project.