Natural resources utilization for the in-house production of fluorescence lipid nanoparticles
Nanotechnology, a transformative force, has steadily gained traction across multiple scientific disciplines, including physics, chemistry, engineering, and biology. It offers unprecedented capabilities, especially in the realm of nanoscale particles, ushering in new paradigms in various applications. One of the most revolutionary applications of nanotechnology is in the pharmaceutical sector. Here, nanoparticles have transformed drug and vaccine delivery systems, offering both efficacy and precision. Among these nanoparticles, lipid nanoparticles (LNPs) have stood out, especially for their role in delivering nucleic acid-based drugs and vaccines. These LNPs are intricate assemblies composed of lipids and nucleic acid complexes, offering an amalgamation of stability and deliverability. Such properties have rendered LNPs as invaluable tools in enhancing therapeutic efficacy while minimizing off-target side effects. The myriad of nanoparticles available includes the likes of silver, gold, and lipid nanoparticles. However, the emphasis of this research lies with lipid nanoparticles, given their widespread success in the pharmaceutical arena. LNPs have showcased their potential in delivering drugs with low therapeutic indices, emphasizing their capability to act as versatile platforms for novel drug development. Recent advances have further expanded the horizons of LNPs, paving the way for novel antisense oligonucleotides, innovative vaccines, and complex lipid nanoparticle formations. Characterizing these nanoparticles is paramount, not only for the development of novel drugs but also to comprehend their in vivo behavior. Their multifaceted nature, stemming from their unique excipients, core-bilayer design, and varying sizes, makes their characterization a critical step in the research and development pipeline.
製備藻類衍生物碳點與 Mxene複合材料並應用高效超級電容
本研究運用綠藻、螺旋藻、卡拉膠(k,i,λ)進行製備碳點並應用高效超級電容。本實驗已完成綠藻、螺旋藻、卡拉膠( k,i,λ)在不同的pH值中的溶解度測試,並找出綠藻、螺旋藻、卡拉膠(k,i,λ)各自適合溶解的溫度及溶液。此外,中途也已透過文獻中的實驗證實我們實驗中所運用的電化學實驗設計及裝置可以成功製備出碳點。而在電化學製備碳點的部分目前完成單獨藻類、藻類加histidne的電擊實驗以及測其吸收光譜,也運用先前製備出較穩定的碳點加入MXene進行電化學分析,透過碳點擴大MXene分層,以達到增加MXene電化學效能的效果。最後,預計之後將進行更多的電化學分析,進一步地確認碳點結合MXene能在超級電容的應用。