全國中小學科展

2025年

The Future of Carbon Capture Technology: A Novel Moisture Powered Thin-Film Supercapacitor that Adsorbs Carbon Dioxide

Carbon capture and storage technology (CCS) has tremendous potential to enable the use of fossil fuels while reducing the emissions of CO2 into the atmosphere, and consequently combating climate change. CCS faces several challenges such as energy consumption, cost, low practical applications and environmentally friendliness. This research presents the first carbon capture device capable of capturing CO2 while generating green energy. By integrating advanced materials science with sustainable energy principles, the device addresses the dual challenges of CO2 mitigation and renewable energy production in a single, cost-effective platform. Beyond its technical innovations, this research highlights the device’s scalability and potential to revolutionize carbon capture deployment. The device can be integrated into industrial emissions systems, transportation systems, urban infrastructure, or even wearable technologies, providing versatile applications across different sectors. Furthermore, the device’s lightweight and flexible form factor ensures accessibility as it improves the applicability of CCS technology in remote or developing regions. This study demonstrated a novel approach to carbon capture by implementing carbon capture into a thin-film moisture electricity generator. The developed thin-film supercapacitor successfully demonstrated the capacity for supercapacitive swing adsorption of CO2, which is a relatively novel approach to CCS that is cheap, environmentally friendly, and efficient while generating green energy from ambient humidity.

Flavored Nanofiber Strips Loaded with Amoxicillin as an Alternative Method for Treating Bacterial Infections in Children

Semisynthetic penicillin, Amoxicillin, is a broad-spectrum antibiotic that is widely used to treat bacterial infections in children suffering ear, nose, and throat infections, genitourinary tract infections, skin infections, and lower respiratory tract infections1. This antibiotic works against both gram-positive and gram-negative bacteria, such as Listeria monocytogenes, Haemophilus influenza, Streptococcus pneumonia , Streptococcus pyogene and Escherichia coli1,2. It shows antibacterial activity by inhibiting dd-transpeptidase, which maintains the integrity of the bacterial cell wall which results in bacterial cell death due to a fragile cell wall3. Nonadherence to medication was associated with 50% of drug-related hospitalizations in children4. In order to improve adherence and influence clinical outcome, it is important to acknowledge the importance of drug palatability to children4–6. The currently available liquid suspension form of this antibiotic is administered to patients through oral/GI routes. It is also available in capsules or tablets for adults7–9. In the gastrointestinal tract, the drug has to withstand variable pH conditions and enzymatic degradation , mucus and mucosal barriers to survive resulting in limiting drug bioavailability10,11. In addition to conventional drug delivery formulations, nanofibers can be used to deliver drugs orally, topically, and through buccal or transdermal routes12. Drug-loaded nanofibers offer many advantages as a delivery system, including their porous structure and their efficient delivery of various drugs and bioactive molecules including hydrophobic and hydrophilic drugs12–14. Considering that amoxicillin palatability can affect children patients’ compliance and due to the advantages of both nanofiber drug delivery system and drug delivery through buccal routes, hence, this project aims to prepare flavored electrospun nanofibers loaded with amoxicillin to mask the unpleasant taste of the drug for treating children with bacterial infection. Nanofibers loaded with amoxicillin can be applied between the child's gum and cheek, allowing the fibers to dissolve in mucus and penetrate directly into the bloodstream.

Glass Coloring by the production of Colloidal Hydroxide

When doing an experiment to produce colloidal ferric hydroxide, the bottom of the beaker used was colored in yellow-brown with thin film interference. This phenomenon is well-known, but the cause has not been clearly studied. As a result of the research, the coloration on the bottom of the beaker is caused by β-FeOOH forming a thin film which is chemically bonded with Si-OH on the glass surface. Also, the amount of β-FeOOH depends on the number of experiments, the area of the bottom of the beaker, and the concentration of FeCl3 aq. We found that it can be possible to determine the amount of β-FeOOH from the formula m=knsc and the adhesion constant was found to be 6.8✕10-3 (L/m2). In addition, from machine learning we predicted that the thin film thickness becomes thicker as it moves away from the center.

「硫」不住的「紅」塵── 探討二硫化錫降解羅丹明之研究

本研究將不同比例的硫.與二氯化錫,在固定溫度200℃、加熱時間9小時,所合成出的壓電材料SnS2用來降解羅丹明染料,實驗結果發現以莫耳比1:4為最佳,降解率可達到96%。接著固定莫耳比1:4及溫度200℃下,發現在不同水熱時間時以水熱九小時的SnS2觸媒降解效果最好。最後本實驗以固定比1:4及水熱時間9小時在不同水熱溫度所合成的SnS2觸媒,以水熱溫度200℃時的降解效率最好,可達到96%。接著我們將最佳合成條件的觸媒對不同濃度的羅丹明進行降解,可發現當羅丹明濃度達到50ppm時,只需要2秒降解率即可達到99%,即使濃度達到70ppm時濃度降解效果仍可達到86%。最後對SnS.觸媒進行SEM分析發現顆粒大小為微米等級,而在PL分析發現本觸媒具有活性的能力且符合實驗結果。

智慧蚊監-3D 列印與機器學習

氣候變遷加劇了蚊媒疾病對全球公共衛生的威脅,迫切需要創新的解決方案。在台灣,登革熱的傳播主要由蚊蟲滋生所致。為了解決此問題,我們設計了一款三層結構的3D 列印誘蚊器,包括吸引懷孕雌蚊產卵的誘餌層、捕捉蚊蟲的黏膠層,以及防止異物進入的保護層。該裝置成本低、易製作且不需要外部電力,特別適合在資源有限的地區部署。 我們結合校園監測站每日捕捉的蚊蟲數據與氣象站提供的溫度、濕度和降雨等環境數據,運用SARIMA 與隨機森林混合模型進行分析與預測。SARIMA模型負責捕捉蚊蟲數量的季節性與長期趨勢,而隨機森林模型則處理環境變數與蚊蟲密度之間的非線性關係。此混合模型不僅提高了預測精度,還能解析蚊蟲的生態模式,進一步指導誘蚊器的最佳配置。此外,我們還開發了紅外線感測系統,即時偵測蚊蟲活動,為監測提供精準數據。 為評估氣候變遷的影響,我們模擬了不同全球暖化情境下的蚊蟲密度變化趨勢。結果顯示,隨著溫度上升,蚊蟲密度呈現非線性收斂趨勢,但正相關性依然存在,強調了氣候變遷可能帶來的潛在危害。我們還開發了一個網站,用於即時呈現蚊蟲密度預測,幫助政策制定者和公共衛生機構有效應對疾病防控挑戰。 本研究與聯合國永續發展目標(SDGs)中的SDG3(良好健康與福祉)及SDG13(氣候行動)高度契合,展示了結合3D列印、機器學習、即時感測和網路技術應對蚊媒疾病的創新潛力。此系統提供了一個可持續的全球蚊蟲控制模型,為公共衛生、疾病預防及流行病學的未來創新奠定了堅實基礎。

「稻」出「鋁」想「充」能力

本研究利用農業廢棄物再加工後的-炭化稻殼,經食用醋處理後搭配環保防水明膠配方製成碳紙電極,作為可充式鋁電池的正極材料;負極則是在鋁箔上塗一層較環保無毒的PVA;電解液使用2M氯化鋁/0.1M食鹽水/5g醋酸鈉,吸附在濾紙上,成功製作出可充式「炭化稻殼紙/鋁電池」,充放電循環3次後,放電的初始開路電壓最高可達1.296V,初始短路電流可達137.1mA,串聯兩個電池後,成功使LED燈發光持續至少72天,亦可推動風扇在約4mA的工作電流下維持215分鐘。本作品多使用食品級的環保材料,較以往作品具有低汙染、低成本、超輕薄、可充電、可彎曲等多項優勢,充電後的穩定性更優於市售石墨片電極,可連續充放電至少5次,在進行穿刺實驗後更證實其安全性較鋰電池高,期待能為大型儲能系統添加一股永續環保的新契機。

運用深度學習色彩校正模型之黃疸偵測 Jaundice Detection Using Deep Learning-Based Color Correction Models

現今醫療中,黃疸的早期偵測對肝臟疾病的預防與治療至關重要,但多數人難以在症狀輕微時察覺。我們希望藉由智慧手機影像結合機器學習進行黃疸檢測,提升民眾自我監測的能力。Su 等人(2021)曾使用深度學習和機器學習進行黃疸預測,但其方法依賴專業色卡進行色彩校正,成本高且限制應用範圍。本研究提出以白平衡演算法中的白色補丁法與灰界演算法,搭配深度學習模型 DCCNM1和2 取代色卡,提升黃疸檢測的普及性與便利性。經黃疸偵測效果評估顯示,DCCNM2 在無色卡模型中表現最佳,雖然各指標略低於色卡校正,但其展現出優異的穩定性和準確性,證明其作為無色卡黃疸篩檢方案的可行性。本方法將能提供便捷的居家黃疸檢測途徑,尤其對偏鄉地區居民而言,不僅提升早期發現的機會,還能有效減輕醫護人員的負擔,推動大眾健康管理。

低速狀態下磁性齒輪傳動特性的實驗與理論探討

本研究探討利用指尖陀螺作為磁性齒輪,觀察並分析其磁性齒輪效應。本研究測量了磁性齒輪間的轉動慣量、影響範圍及力矩,除此之外,本研究發現,自由運轉狀態下的齒輪,具有三個運動階段,高速狀態,介於高速至低速難以預測的階段,以及低速的穩定運動狀態。 此外,為提升磁場計算的精確度,我們發現磁偶極近似方法無法有效描述系統中的磁場分佈,因此使用積分計算來求得更精確的磁場數據,並與實驗數據進行比對,結果吻合良好。

在量子電腦上模擬量子諧振子隨時間演化

量子電腦是近年來新發展的科技,利用量子糾纏態的量子位元進行計算。本文希望可以利用量子電腦計算諧振子隨時間演化算符。而這也是我第一次在量子電腦上模擬諧振子隨時間演化系統。首先我找出可以用於諧振子算符的合適算符矩陣大小、空間步長(Δ𝑥)、質量(m)、角頻率(ω)並且在位置基底下表現時間演化算符矩陣。設計並簡化量子電路後,使用IBM公司提供的量子電腦模擬並計算數值。我透過矩陣修正減少修正輸出錯誤產生的誤差,達到較精確的結果。模擬出在一個時間單位內的數值與理論值大致相符,未來希望可以利用此量子電路尋找矩陣的特徵值或是模擬更大型的系統。

數位物理實驗室:毫米波雷達系統之設計與應用

本研究旨在設計基於毫米波雷達的數位物理實驗系統,用於精確量化彈簧簡諧運動。傳統物理實驗易受肉眼觀察與手動測量的誤差影響,本系統利用24GHz毫米波雷達結合自製電路板,進行即時、無接觸的運動測量。透過設計電路板、撰寫韌體訊號轉換程式,並進行數位數據分析,成功開發了靈敏的毫米波雷達系統。我們利用彈簧簡諧運動實驗驗證了該系統,觀察不同質量砝碼對彈簧運動頻率的影響。實驗結果顯示,考慮彈簧質量後,測量數據與理論結果的均方根誤差從0.62Hz降低至0.35Hz,顯示出系統的高度精確性及穩定性。本研究成功解決了傳統實驗中的量測誤差問題,以毫米波雷達技術實現了精確觀測。開源設計有助於推廣至學校的物理實驗室,為學生提供先進的實驗工具與數據分析經驗。這展示了毫米波雷達在物理實驗中的應用潛力,並為未來教學實驗提供了高效、低成本的解決方案。