The Future of Carbon Capture Technology: A Novel Moisture Powered Thin-Film Supercapacitor that Adsorbs Carbon Dioxide
Carbon capture and storage technology (CCS) has tremendous potential to enable the use of fossil fuels while reducing the emissions of CO2 into the atmosphere, and consequently combating climate change. CCS faces several challenges such as energy consumption, cost, low practical applications and environmentally friendliness. This research presents the first carbon capture device capable of capturing CO2 while generating green energy. By integrating advanced materials science with sustainable energy principles, the device addresses the dual challenges of CO2 mitigation and renewable energy production in a single, cost-effective platform. Beyond its technical innovations, this research highlights the device’s scalability and potential to revolutionize carbon capture deployment. The device can be integrated into industrial emissions systems, transportation systems, urban infrastructure, or even wearable technologies, providing versatile applications across different sectors. Furthermore, the device’s lightweight and flexible form factor ensures accessibility as it improves the applicability of CCS technology in remote or developing regions. This study demonstrated a novel approach to carbon capture by implementing carbon capture into a thin-film moisture electricity generator. The developed thin-film supercapacitor successfully demonstrated the capacity for supercapacitive swing adsorption of CO2, which is a relatively novel approach to CCS that is cheap, environmentally friendly, and efficient while generating green energy from ambient humidity.
Flavored Nanofiber Strips Loaded with Amoxicillin as an Alternative Method for Treating Bacterial Infections in Children
Semisynthetic penicillin, Amoxicillin, is a broad-spectrum antibiotic that is widely used to treat bacterial infections in children suffering ear, nose, and throat infections, genitourinary tract infections, skin infections, and lower respiratory tract infections1. This antibiotic works against both gram-positive and gram-negative bacteria, such as Listeria monocytogenes, Haemophilus influenza, Streptococcus pneumonia , Streptococcus pyogene and Escherichia coli1,2. It shows antibacterial activity by inhibiting dd-transpeptidase, which maintains the integrity of the bacterial cell wall which results in bacterial cell death due to a fragile cell wall3. Nonadherence to medication was associated with 50% of drug-related hospitalizations in children4. In order to improve adherence and influence clinical outcome, it is important to acknowledge the importance of drug palatability to children4–6. The currently available liquid suspension form of this antibiotic is administered to patients through oral/GI routes. It is also available in capsules or tablets for adults7–9. In the gastrointestinal tract, the drug has to withstand variable pH conditions and enzymatic degradation , mucus and mucosal barriers to survive resulting in limiting drug bioavailability10,11. In addition to conventional drug delivery formulations, nanofibers can be used to deliver drugs orally, topically, and through buccal or transdermal routes12. Drug-loaded nanofibers offer many advantages as a delivery system, including their porous structure and their efficient delivery of various drugs and bioactive molecules including hydrophobic and hydrophilic drugs12–14. Considering that amoxicillin palatability can affect children patients’ compliance and due to the advantages of both nanofiber drug delivery system and drug delivery through buccal routes, hence, this project aims to prepare flavored electrospun nanofibers loaded with amoxicillin to mask the unpleasant taste of the drug for treating children with bacterial infection. Nanofibers loaded with amoxicillin can be applied between the child's gum and cheek, allowing the fibers to dissolve in mucus and penetrate directly into the bloodstream.
Glass Coloring by the production of Colloidal Hydroxide
When doing an experiment to produce colloidal ferric hydroxide, the bottom of the beaker used was colored in yellow-brown with thin film interference. This phenomenon is well-known, but the cause has not been clearly studied. As a result of the research, the coloration on the bottom of the beaker is caused by β-FeOOH forming a thin film which is chemically bonded with Si-OH on the glass surface. Also, the amount of β-FeOOH depends on the number of experiments, the area of the bottom of the beaker, and the concentration of FeCl3 aq. We found that it can be possible to determine the amount of β-FeOOH from the formula m=knsc and the adhesion constant was found to be 6.8✕10-3 (L/m2). In addition, from machine learning we predicted that the thin film thickness becomes thicker as it moves away from the center.